For the answer to the question above, let us first start with relaxation time. it is the absence of an external electric field, the free electrons in a metallic substance will move in random directions so that the resultant velocity of free electrons in any direction is equal to zero. While the Collision time it is<span> the mean </span>time<span> required for the direction of motion of an individual type particle to deviate through approximately as a consequence of </span>collisions<span> with particles of type.</span>
Answer:
The car will travel 30 miles during the 30-minutes period of acceleration.
Explanation:
Given data :
Initial velocity = v₁ = 50 miles/hour
Final velocity = v₂ = 70 miles/hour
Time = t = 30 min = 0.5 hour
Using the definition of acceleration, we find the acceleration (a)
a = (v₂ - v₁) ÷ t
a = (70 - 50) ÷ 0.5
a = 20 ÷ 0.5
a = 40 miles/hour²
Using 3rd equation of motion, we find the distance travel (s)
2as = v₂² - v₁²
2(40)s = 70² - 50²
80 × s = 4900 - 2500
s = 2400 ÷ 80
s = 30 miles
Answer:
Explanation:
Momentum is a concept and is defined as,
Momentum = mass × velocity
So to calculate the momentum of the car
momentum of the car = mass of the car × velocity of the car
So we get,
momentum of the car = 1800 × 30
= 54000 Ns
Answer:
A few of the positive particles aimed at a gold foil seemed to bounce back
Explanation: