Ethylene glycol is termed as the primary ingredients in antifreeze.
The ethylene glycol molecular formula is C₂H₆O₂.
Molar mass of C₂H₆O₂ is = (2×12) +(6×1) + (216) = 62g/mol
Now that antifreeze by mass is 50%, then there is 1kg of ethylene glycol which is present in 1kg of water.
ΔTf = Kf×m
ΔTf = depression in the freezing point.
= freezing point of water freezing point of the solution
= O°c - Tf
= -Tf
Kf = depression in freezing constant of water = 1.86°C/m
M is the molarity of the solution.
=(mass/molar mass) mass of solvent in kg
=1000g/62 (g/mol) /1kg
=16.13m
If we plug the value we get
-Tf = 1.86 × 16.13 = 30
Tf = -30°c
Answer:
Option C is correct.
Modulus of elasticity of the composite perpendicular to the fibers = (12 × 10⁶) psi
Explanation:
For combination of materials, the properties (especially physical properties) of the resulting composite is a sum of the fractional contribution of each material thay makes up the composite.
In this composite,
The fibres = 20 vol%
Aluminium = 80 vol%
Modulus of elasticity of the composite
= [0.2 × E(fibres)] + [0.8 × E(Al)]
Modulus of elasticity of the fibers = E(fibres) = (55 × 10⁶) psi. =
Modulus of elasticity of aluminum = E(Al) = (10 × 10⁶) psi.
But modulus of elasticity of the composite perpendicular to the fibers is given in the expression.
[1 ÷ E(perpendicular)]
= [0.2 ÷ E(fibres)] + [0.8 ÷ E(Al)]
[1 ÷ E(perpendicular)]
= [0.2 ÷ (55 × 10⁶)] + [0.8 ÷ (10 × 10⁶)]
= (3.636 × 10⁻⁹) + (8.00 × 10⁻⁸)
= (8.3636 × 10⁻⁸)
E(perpendicular) = 1 ÷ (8.3636 × 10⁻⁸)
= 11,961,722.5 psi = (11.96 × 10⁶) psi
= (12 × 10⁶) psi
Hope this Helps!!!
Answer:magnitude -5; angle 160°
Explanation:
Vector A is described as having magnitude 5 and angle -20°.
To get an equivalent vector, we either leave the magnitude at 5 and add 360° to the angle, or we reverse the magnitude to -5 and add 180° to the angle.
5 @ -20° = 5 @ 340°
5 @ -20° = -5 @ 160°
The third one is the answer.
You would need to use the equation a= (v-u)÷t
You need to substitute in the correct numbers.
a= (10-20)÷1
Your answer is -10m/s^2
C. The water cycle spreads water out evenly around the whole Earth