To balance it, it would be N2 + 3H2 ------> 2NH3.
for c) it would be 2N2 + 6H2 -------> 4NH3
Answer:
Explanation: Zn (s) + 2 AgCl (s) ⇒ ZnCl2 (s) + 2 Ag(s)
Less noble Zinc reduces more noble Silver
Answer: Option (B) is the correct answer.
Explanation:
A covalent compound is a compound formed by sharing of electrons. And, in a covalent network solid atoms are bonded by covalent bonds in a continuous network that is extending throughout the material or solid.
This continuous arrangement of atoms are like a lattice.
For example, diamond is a covalent network solid in which carbon atoms are arranged in a continuous lattice like structure.
Hence, we can conclude that the statement all the atoms are covalently bonded to other atoms to form a lattice-like structure, best describes the structure of covalent network solids.
Calcium reacts gently with water to give hydrogen and calcium hydroxide, which is only slightly soluble, thus slows down the reaction.
It will be assumed that hydrochloric acid used is a dilute aqueous solution.
However, calcium reacts with hydrochloric acid to give calcium chloride which is readily soluble in water, and hydrogen, being a typical reaction of relatively active metals with acids.
Ca(s) + 2HCl(aq) -> CaCl2(aq) +H2(g) ↑ + heat
The clues that it is a chemical reaction could be:
- formation of a new substance, gaseous hydrogen
- disappearance of a metallic solid in the solution
- heat formed during the vigorous reaction.
As silver is below hydrogen in the electrochemical series, it will not be expected to react with dilute hydrocloric acid. (however, it dissolves in oxidizing acid such as nitric acid, but not displacing hydrogen as a product).
The forces between particles are called intermolecular forces. A strong intermolecular force means that the particles are tightly paced and is associated with the solid phase. Moderate intermolecular force is associated with the liquid state and little to no intermolecular force is associated with the gaseous state. Temperature has a direct effect on the state of matter in which the substance exists has. Generally speaking, a rise in tempreature changes a substance from the solid to liquid phase and from liquid to gaseus phase. The reverse is true, if the temperature lowers then the substance will go from gas to liquid and liquid to solid. It is important to not that temperature affects intermolecular forces. As the temperature increases then the individual particles become excited and gain enough energy to over the intermolecular forces and so the particles seperate from each other.