1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LiRa [457]
2 years ago
15

At what angle two forces P + Q and (P - Q) act so that their resultant is :

Physics
2 answers:
stiv31 [10]2 years ago
8 0

Use resultant formula

\boxed{\sf R=\sqrt{A^2+B^2+2ABcos\theta}}

So

#1

A be p+q and B be p-q

\\ \rm\Rrightarrow R=\sqrt{3p^2+q^2}

\\ \rm\Rrightarrow \sqrt{(p+q)^2+(p-q)^2+2(p+q)(p-q)cos\alpha}=\sqrt{3p^2+q^2}

\\ \rm\Rrightarrow 2p^2+2q^2+2(p^2-q^2)cos\alpha=3p^2+q^2

\\ \rm\Rrightarrow 2cos\alpha=1

\\ \rm\Rrightarrow cos\alpha=\dfrac{1}{2}

\\ \rm\Rrightarrow \alpha=\dfrac{\pi}{3}

#2

\\ \rm\Rrightarrow 2(p^2+q^2)+2(p^2-q^2)cos\beta=2(p^2+q^2)

\\ \rm\Rrightarrow 2cos\beta=0

\\ \rm\Rrightarrow cos\beta=0

\\ \rm\Rrightarrow \beta=\dfrac{\pi}{2}

#3

\\ \rm\Rrightarrow 2(p^2+q^2)+2(p^2-q^2)cos\gamma=p^2+q^2

\\ \rm\Rrightarrow 2(p^2-q^2)cos\gamma=-(p^2+q^2)

\\ \rm\Rrightarrow cos\gamma =\dfrac{q^2-p^2}{2(p^2-q^2)}

\\ \rm\Rrightarrow \gamma=cos^{-1}\left(\dfrac{q^2-p^2}{2(p^2+q^2)}\right)

sashaice [31]2 years ago
3 0

Answer:

See below ~

Explanation:

Here, let's apply the resultant vector formula :

R = \sqrt{A^{2} + B^{2} + 2ABcos\theta}

Part (i) :

√3P² + Q² = √(P + Q)² + (P - Q)² + 2(P + Q)(P - Q)cosθ

3P² + Q² = P² + Q² + 2PQ + P² + Q² - 2PQ + 2(P² - Q²)cosθ

2(P² - Q²)cosθ = P² - Q²

cosθ = 1/2

θ = π/3 or 60°

Part (ii) :

√2(P² + Q²) = √(P + Q)² + (P - Q)² + 2(P + Q)(P - Q)cosθ

2(P² + Q²) = P² + Q² + 2PQ + P² + Q² - 2PQ + 2(P² - Q²)cosθ

2(P² - Q²)cosθ = 0

cosθ = 0

θ = π/2 or 90°

Part (iii) :

√P² + Q² = √(P + Q)² + (P - Q)² + 2(P + Q)(P - Q)cosθ

P² + Q² = P² + Q² + 2PQ + P² + Q² - 2PQ + 2(P² - Q²)cosθ

2(P² - Q²)cosθ = -P² - Q²

cosθ = \frac{-(P^{2}+ Q^{2}) }{2(P^{2}-Q^{2})  }

\theta = cos^{-1} \frac{-(P^{2}+ Q^{2}) }{2(P^{2}-Q^{2})  }

You might be interested in
An airplane starts from rest and reaches a takeoff velocity of 60.0m/s due north in 4.0 s. How far has it traveled before takeof
Blizzard [7]
240 meters that's it
7 0
3 years ago
A point charge q is located at the center of a spherical shell of radius a that has a charge −q uniformly distributed on its sur
muminat

Answer:

a) E = 0

b) E =  \dfrac{k_e \cdot q}{ r^2 }

Explanation:

The electric field for all points outside the spherical shell is given as follows;

a) \phi_E = \oint E \cdot  dA =  \dfrac{\Sigma q_{enclosed}}{\varepsilon _{0}}

From which we have;

E \cdot  A =  \dfrac{{\Sigma Q}}{\varepsilon _{0}} = \dfrac{+q + (-q)}{\varepsilon _{0}}  = \dfrac{0}{\varepsilon _{0}} = 0

E = 0/A = 0

E = 0

b) \phi_E = \oint E \cdot  dA =  \dfrac{\Sigma q_{enclosed}}{\varepsilon _{0}}

E \cdot  A  = \dfrac{+q }{\varepsilon _{0}}

E  = \dfrac{+q }{\varepsilon _{0} \cdot A} = \dfrac{+q }{\varepsilon _{0} \cdot 4 \cdot \pi \cdot r^2}

By Gauss theorem, we have;

E\oint dS =  \dfrac{q}{\varepsilon _{0}}

Therefore, we get;

E \cdot (4 \cdot \pi \cdot r^2) =  \dfrac{q}{\varepsilon _{0}}

The electrical field outside the spherical shell

E =  \dfrac{q}{\varepsilon _{0} \cdot (4 \cdot \pi \cdot r^2) }= \dfrac{q}{4 \cdot \pi \cdot \varepsilon _{0} \cdot r^2 }=  \dfrac{q}{(4 \cdot \pi \cdot \varepsilon _{0} )\cdot r^2 }

k_e=  \dfrac{1}{(4 \cdot \pi \cdot \varepsilon _{0} ) }

Therefore, we have;

E =  \dfrac{k_e \cdot q}{ r^2 }

5 0
3 years ago
A high powered rifle can shoot a bullet at a speed of 1500 mi/hr. On the moon, with almost no atmosphere and an acceleration due
Amiraneli [1.4K]

Answer:

Explanation:

On the Moon :----

1500 x 1.6 = 2400 m /s is initial velocity of bullet .

g = 1.6 m /s²

v = u - gt

0 = 2400 - 1.6 t

t = 1500 s

This is time of ascent

Time of decent will also be the same

Total time of flight = 2 x 1500 = 3000 s

On the Earth : ---

v = u - a₁ t

0 = u - a₁ x 18

u = 18a₁

v² = u² - 2 x a₁ x 2743.2

0 = (18a₁ )² - 2 x a₁ x 2743.2

a₁ = 16.93

For downward return

s = ut + 1/2 a₂ x t²

2743.2 = 0 + .5 x a₂ x 31²

a₂ = 5.7 m /s²

If d be the deceleration produced by air

g + d = 16.93 ( during upward journey )

g - d = 5.7

g = (16.93 + 5.7) / 2  

= 11.315 m / s

d = 5.6 m /s²

So air is creating a deceleration of 5.6 m /s².

6 0
3 years ago
Why is the temperature usually warmest a the equator and colder as you move towards the poles? *
Gwar [14]

Answer:

Option D, The equator gets more direct sunlight throughout the yea

Explanation:

3 0
3 years ago
Read 2 more answers
explain a method applied to test a diesel engine at constant speed at list the method used to measure the friction power​
lana66690 [7]

Automotive idustries  made a paradigm shift in selection of viscometrics of engine lubricant,from higher to lower viscosity grade,for improving fuel economy

Explanation:

3 0
3 years ago
Other questions:
  • 5. During the annual shuffleboard competition, Renee gives her puck an initial speed of 9.32 m/s. Once leaving her stick, the pu
    11·1 answer
  • An object with a mass of m = 3.00 kg has an initial velocity of vi = 6.00 m/s and a final velocity of vf = −8 m/s.
    5·1 answer
  • Metalloids have properties of both ________ and _____________
    10·2 answers
  • Best answer gets brainliest!!!!
    9·2 answers
  • Heliocentric theory:
    5·2 answers
  • A green plant absorbs light a frog eats flies these are both examples of how organisms
    8·1 answer
  • My buddy and I are planning a shore dive. we're descending onto a very gradual slope that begins at 5 m/15 ft, so our descent an
    11·1 answer
  • I need help with #4 and #5?
    10·1 answer
  • I need help with one question on my homework. This is on the Specific Heat Capacity required practical.
    9·1 answer
  • If a 1-megaton nuclear weapon is exploded
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!