Answer:
Vertical component of velocity is 9.29 m/s
Explanation:
Given that,
Velocity of projection of a projectile, v = 22 m/s
It is fired at an angle of 22°
The horizontal component of velocity is v cosθ
The vertical component of velocity is v sinθ
So, vertical component is given by :



Hence, the vertical component of the velocity is 9.29 m/s
Average speed = (1/2) (beginning speed + ending speed)
= (1/2) ( 13 m/s + 30 m/s )
= (1/2) ( 43 m/s )
= 21.5 m/s
I think you almost got it.
At the top, the velocity only has horizontal component, so v=12 m/s is v_x, which is v*cos(theta), because v_x is constant, so the same when it was launched or now.
With the value of the initial speed (28 m/s, which is the total speed), you can set
v_x = v * cos( theta ) ---> 12 = 28*cos(theta) --> cos(theta)=12/28=3/7
or theta = 64.62 deg, it is D. Think about it. I hope you see it.
Answer:
-6 m/s²
Explanation:
Given:
v₀ = 50 m/s
v = 20 m/s
t = 5 s
Find: a
v = at + v₀
20 m/s = a (5 s) + 50 m/s
a = -6 m/s²
Answer: The following statement is true about squall line thunderstorm development: <em><u>These often form ahead of the advancing front but rarely behind it because lifting of warm, humid air and the generation of a squall line usually occur in the warm sector ahead of an advancing cold front. Behind a cold front, the air motions are usually downward, and the air is cooler and drier.</u></em>
<em>An upper-level wave, accountable for the fabrication of a squall line, extend in front of and backside a cold front, the air backside the front is cold, steady and settling while the air ahead of the front is hot and co-seismic.</em>