Answer:
2649600 Joules
Explanation:
Efficiency = 40%
m = Mass of air = 92000 kg
v = Velocity of wind = 12 m/s
Kinetic energy is given by

The kinetic energy of the wind is 6624000 Joules
The wind turbine extracts 40% of the kinetic energy of the wind

The energy extracted by the turbine every second is 2649600 Joules
Answer:
0 m/s
Explanation:
Average velocity of an object is given by the net displacement divided by time taken. Displacement is equal to the shortest path covered by the object.
In this problem, a player runs the length of the 30-meter court and back. The player does this three times in 60 seconds.
As the player runs the court and returns to the original point. It would mean that the shortest path covered is 0.
Average velocity = displacement/time
v=0/30
v = 0 m/s
Hence, the correct option is (1).
Answer:
Strong nuclear force is 1-2 order of magnitude larger than the electrostatic force
Explanation:
There are mainly two forces acting between protons and neutrons in the nucleus:
- The electrostatic force, which is the force exerted between charged particles (therefore, it is exerted between protons only, since neutrons are not charged). The magnitude of the force is given by

where k is the Coulomb's constant, q1 and q2 are the charges of the two particles, r is the separation between the particles.
The force is attractive for two opposite charges and repulsive for two same charges: therefore, the electrostatic force between two protons is repulsive.
- The strong nuclear force, which is the force exerted between nucleons. At short distance (such as in the nucleus), it is attractive, therefore neutrons and protons attract each other and this contributes in keeping the whole nucleus together.
At the scale involved in the nucleus, the strong nuclear force (attractive) is 1-2 order of magnitude larger than the electrostatic force (repulsive), therefore the nucleus stays together and does not break apart.
You asked a question. I'm about to answer it.
Sadly, I can almost guarantee that you won't understand the solution.
This realization grieves me, but there is little I can do to change it.
My explanation will be the best of which I'm capable.
Here are the Physics facts I'll use in the solution:
-- "Apparent magnitude" means how bright the star appears to us.
-- "Absolute magnitude" means the how bright the star WOULD appear
if it were located 32.6 light years from us (10 parsecs).
-- A change of 5 magnitudes means a 100 times change in brightness,
so each magnitude means brightness is multiplied or divided by ⁵√100 .
That's about 2.512... .
-- Increasing magnitude means dimmer.
Decreasing magnitude means brighter.
+5 is 10 magnitudes dimmer than -5 .
-- Apparent brightness is inversely proportional to the square
of the distance from the source (just like gravity, sound, and
the force between charges).
That's all the Physics. The rest of the solution is just arithmetic.
____________________________________________________
-- The star in the question would appear M(-5) at a distance of
32.6 light years.
-- It actually appears as a M(+5). That's 10 magnitudes dimmer than M(-5),
because of being farther away than 32.6 light years.
-- 10 magnitudes dimmer is ( ⁵√100)⁻¹⁰ = (100)^(-2) .
-- But brightness varies as the inverse square of distance,
so that exponent is (negative double) the ratio of the distances,
and the actual distance to the star is
(32.6) · (100)^(1) light years
= (32.6) · (100) light years
= approx. 3,260 light years . (roughly 1,000 parsecs)
I'll have to confess that I haven't done one of these calculations
in over 50 years, and I'm not really that confident in my result.
If somebody's health or safety depended on it, or the success of
a space mission, then I'd be strongly recommending that you get
a second opinion.
But, quite frankly, I do feel that mine is worth the 5 points.