1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
drek231 [11]
2 years ago
11

5. During the annual shuffleboard competition, Renee gives her puck an initial speed of 9.32 m/s. Once leaving her stick, the pu

ck slows down at a rate of -4.06 m/s/s. Determine the time it takes the puck to slow to a stop.
Physics
1 answer:
abruzzese [7]2 years ago
3 0
V=0 v²=0, A=v-u/t. T=v-u/a. T= 0-9.32/-4.06 therefore time = 2.296 seconds
You might be interested in
A paleontologist estimates that when a particular rock formed, it contained 12 mg of the radioactive isotope potassium-40, which
leva [86]

Answer:

t = 2.52 billion \:years

Explanation:

As we know by radioactivity law

N = N_o e^{-\lambda t}

so here we will have

N = 3 mg

N_o = 12 mg

now we will have

3 = 12 e^{-\lambda t}

\lambda t = ln 4

now we also know that

\lambda = \frac{ln2}{1.26 \times 10^6 yrs}

t = 1.26\times 10^6\times \frac{ln4}{ln2}

t = 2.52 billion \:years

7 0
3 years ago
Why mole is called fundamental unit.​
gladu [14]

Explanation:

because it doesn't depend upon other unit like kg meter and second

4 0
2 years ago
Select the correct answer.
spin [16.1K]

Answer:

There isnt enough in your question to answer the question bro, like we need a picture or something bro.

Explanation:

7 0
3 years ago
The volume electric charge density of a solid sphere is given by the following equation: The variable r denotes the distance fro
qwelly [4]

Answer:

62.8 μC

Explanation:

Here is the complete question

The volume electric charge density of a solid sphere is given by the following equation: ρ = (0.2 mC/m⁵)r²The variable r denotes the distance from the center of the sphere, in spherical coordinates. What is the net electric charge (in μC) of the sphere if the radius of the sphere is 0.5 m?

Solution

The total charge on the sphere Q = ∫∫∫ρdV where ρ = volume charge density = 0.2r² and dV = volume element in spherical coordinates = r²sinθdθdrdΦ

So,  Q =  ∫∫∫ρdV

Q =  ∫∫∫ρr²sinθdθdrdΦ

Q =  ∫∫∫(0.2r²)r²sinθdθdrdΦ

Q =  ∫∫∫0.2r⁴sinθdθdrdΦ

We integrate from r = 0 to r = 0.5 m, θ = 0 to π and Φ = 0 to 2π

So, Q =  ∫∫∫0.2r⁴sinθdθdrdΦ

Q =  ∫∫∫0.2r⁴[∫sinθdθ]drdΦ

Q =  ∫∫0.2r⁴[-cosθ]drdΦ

Q =  ∫∫0.2r⁴-[cosπ - cos0]drdΦ

Q =  ∫∫∫0.2r⁴-[-1 - 1]drdΦ

Q =  ∫∫0.2r⁴-[- 2]drdΦ

Q =  ∫∫0.2r⁴(2)drdΦ

Q =  ∫∫0.4r⁴drdΦ

Q =  ∫0.4r⁴dr∫dΦ

Q =  ∫0.4r⁴dr[Φ]

Q =  ∫0.4r⁴dr[2π - 0]

Q =  ∫0.4r⁴dr[2π]

Q =  ∫0.8πr⁴dr

Q =  0.8π∫r⁴dr

Q =  0.8π[r⁵/5]

Q = 0.8π[(0.5 m)⁵/5 - (0 m)⁵/5]

Q = 0.8π[0.125 m⁵/5 - 0 m⁵/5]

Q = 0.8π[0.025 m⁵ - 0 m⁵]

Q = 0.8π[0.025 m⁵]

Q = (0.02π mC/m⁵) m⁵

Q = 0.0628 mC

Q = 0.0628 × 10⁻³ C

Q = 62.8 × 10⁻³ × 10⁻³ C

Q = 62.8 × 10⁻⁶ C

Q = 62.8 μC

3 0
2 years ago
A wave on a string is described by y(x, t) = (3.0 cm) × cos[2π(x/(2.4 m + t/(0.20 s))], where x is in m and t in s.
Len [333]

Corrected and Formatted Question:

A wave on a string is described by y(x, t) = (3.0 cm) × cos[2π(x/(2.4 m) + t/(0.20 s))], where x is in m and t in s.

(a) In what direction is this wave traveling?

(b) What are the wave speed, frequency, and wavelength?

(c) At t = 0.50 , what is the displacement of the string at x = 0.20 m?

Answer:

The wave is travelling in the negative x direction

The wave speed = 12.0m/s

The frequency = 5Hz

The wavelength = 2.4m

The displacement at t = 0.50s and x = 0.20m is -0.029m

Explanation:

The general wave equation is given by;

y(x, t) = y cos (2\pi(x/λ) - 2\pift)    --------------------------------(i)

Where;

y(x, t) is the displacement of the wave at position x and a given time t

y = amplitude of the wave

f = frequency of the wave

λ = wavelength of the wave

Given;

y(x, t) = (3.0 cm) × cos[2π(x/(2.4 m) + t/(0.20 s))]   ------------------(ii)

Which can be re-written as;

y(x, t) = (3.0 cm) × cos[2π(x/(2.4 m)) + 2π(t/(0.20 s))]  -------------(iii)

Comparing equations (i) and (iii) we have that;

=> 2π(x/(2.4 m) = 2π(x/λ)

=> λ = 2.4m

Therefore the wavelength of the wave is 2.4m

Also, still comparing the two equations;

=> 2π(t/(0.20 s) = 2πft

=> f = 1 / 0.20

=> f = 5Hz

Therefore the frequency of the wave is 5Hz

To get the wave speed (v), it is given by;

v = f x λ

Where f = 5Hz and λ = 2.4m

=> v = 5 x 2.4

=> v = 12.0m/s

Therefore, the speed of the wave is 12.0m/s

At t = 0.50s and x = 0.20m;

The displacement, y(x,t) of the string wave is given by

y(x, t) = (3.0 cm) × cos[2π(x/(2.4 m) + t/(0.20 s))]

<em>Convert the amplitude of 3.0cm to m</em>

=> 3.0cm = 0.03m

<em>Substitute this back into the equation</em>

=> y(x, t) = (0.03m) × cos[2π(x/(2.4 m) + t/(0.20 s))]

<em>Substitute the values of t and x into the equation above;</em>

=> y(x, t) = (0.03m) × cos[2π((0.20)/(2.4 m) + 0.50/(0.20 s))]

<em>Carefully solve the equation</em>

=> y(x, t) = (0.03m) × cos[2π((0.20)/(2.4 m)) + 2π(0.50/(0.20 s))]

=> y(x, t) = (0.03m) × cos[0.08π + 5π]

=> y(x, t) = (0.03m) × cos[5.08π]

=> y(x, t) = (0.03m) × cos[15.96]

=> y(x, t) = (0.03m) × cos[15.96]

=> y(x, t) = (0.03m) × -0.9684

=> y(x, t) = 0.029m

Therefore the displacement at those points is -0.029m

Also, the sign of the displacement shows that the direction of the wave is in the negative x direction.

8 0
3 years ago
Other questions:
  • Carter pushes a bag full of basketball jerseys across the gym floor. The he pushes with a constant force of 21 newtons. If he pu
    8·2 answers
  • Energy transfer by convection is usually restricted to what type of substance?
    15·2 answers
  • Question 7<br> (01.01 MC)<br> What is the difference between a hypothesis and a theory?
    15·1 answer
  • An oscillator consists of a block of mass 0.500 kg connected to a spring. When set into oscillation with amplitude 35.0 cm, the
    13·1 answer
  • ........................................................ waves are detected first because they move so fast .
    11·1 answer
  • a box is pushed 40 m by a mover. the amount of work done was 2,240j. how much force was exerted on the box a box is pushed 40 m
    11·2 answers
  • How can we calculate the e.m.f of the battery?.
    13·2 answers
  • Explain Rutherford's experiment?
    10·1 answer
  • insulator allows the electric current to pass through it true or false please anyone please please please​
    14·1 answer
  • 4. A car with a mass of 1000 kg is travelling at an acceleration of 25 m/s2 and hits a wall. What is
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!