1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andrew [12]
2 years ago
13

Average speed equals distance divided by time. on a journey to the

Physics
1 answer:
Tanzania [10]2 years ago
6 0

The average speed will be 2.38×10⁶ m/sec.The average speed of an object indicates the pace at which it will traverse a distance. The metric unit of speed is the meter per second.

<h3>What is the average speed?</h3>

The total distance traveled by an object divided by the total time taken is the average speed.

The speed calculated at any particular instant of time is known as the instantaneous speed.

Given data;

Distance travelled = 4.12x10¹⁶ meter

Time period= 1.73x10¹⁰ sec

The average speed is found as

\rm V_{avg}= \frac{d}{t} \\\\\ \rm V_{avg}= \frac{4.12 \times 10^{16}}{1.73 \times 10^{10} } \\\\\ V_{avg}=2.38 \times 10^6 \ m/sec

Hence, the average speed will be 2.38×10⁶ m/sec.

To learn more about the average speed, refer to the link;

brainly.com/question/12322912

#SPJ1

You might be interested in
A spherical helium filled balloon (B) with a hanging passenger cage being held by a single vertical cable (C) attached to Earth
Gre4nikov [31]

Answer:

The tension is  T  = 4326.7 \  N

Explanation:

From the question we are told that

   The  total mass is  m  =  200 \  kg

    The  radius is r = 5 \  m

     The  density of air is  \rho_a  =  1.225 \ kg/m^3

Generally the upward  force acting on the balloon is mathematically represented as

        F_N  =   T  + mg

=>     (\rho_a  *  V  *  g ) =   T  + mg

=>   T  =  (\rho_a  * V  *  g   )  - mg

Here V is the volume  of the spherical helium filled balloon which is mathematically represented as

      V  =  \frac{4}{3}  * \pi r^3

=>   V  =  \frac{4}{3}  * 3.142 *(5)^3

=>   V  = 523.67\  m^3

So

    T  = (1.225 *  523.67*  9.8 ) -  200 *  9.8

   T  = 4326.7 \  N

5 0
2 years ago
The momentum of a 5-kilogram object moving at 6 meters per second is-
goldfiish [28.3K]
I think the answer is 30 but I’m not sure
3 0
2 years ago
Sayid made a chart listing data of two colliding objects. A 5-column table titled Collision: Two Objects Stick Together with 2 r
Alborosie

Answer:

6 m/s is the missing final velocity

Explanation:

From the data table we extract that there were two objects (X and Y) that underwent an inelastic collision, moving together after the collision as a new object with mass equal the addition of the two original masses, and a new velocity which is the unknown in the problem).

Object X had a mass of 300 kg, while object Y had a mass of 100 kg.

Object's X initial velocity was positive (let's imagine it on a horizontal axis pointing to the right) of 10 m/s. Object Y had a negative velocity (imagine it as pointing to the left on the horizontal axis) of -6 m/s.

We can solve for the unknown, using conservation of momentum in the collision: Initial total momentum = Final total momentum (where momentum is defined as the product of the mass of the object times its velocity.

In numbers, and calling P_{xi} the initial momentum of object X and P_{yi} the initial momentum of object Y, we can derive the total initial momentum of the system: P_{total}_i=P_{xi}+P_{yi}= 300*10 \frac{kg*m}{s} -100*6\frac{kg*m}{s} =\\=(3000-600 )\frac{kg*m}{s} =2400 \frac{kg*m}{s}

Since in the collision there is conservation of the total momentum, this initial quantity should equal the quantity for the final mometum of the stack together system (that has a total mass of 400 kg):

Final momentum of the system: M * v_f=400kg * v_f

We then set the equality of the momenta (total initial equals final) and proceed to solve the equation for the unknown(final velocity of the system):

2400 \frac{kg*m}{s} =400kg*v_f\\\frac{2400}{400} \frac{m}{s} =v_f\\v_f=6 \frac{m}{s}

7 0
3 years ago
Read 2 more answers
A small sphere with mass mcarries a positive chargeqand is attached to one end of a silk fiber of lengthL. The other end of the
Aleksandr-060686 [28]

Answer:

(a):  The magnitude of the electric force on the small sphere = \dfrac{q\sigma}{2\epsilon_o}.

(b): Shown below.

Explanation:

<u>Given:</u>

  • m = mass of the small sphere.
  • q = charge on the small sphere.
  • L = length of the silk fiber.
  • \sigma = surface charge density of the large vertical insulating sheet.

<h2>(a):</h2>

When the dimensions of the sheet is much larger than the distance between the charge and the sheet, then, according to Gauss' law of electrostatics, the electric field experienced by the particle due to the sheet is given as:

\rm E = \dfrac{\sigma}{2\epsilon_o}.

<em>where,</em>

\epsilon_o is the electrical permittivity of the free space.

The electric field at a point is defined as the amount of electric force experienced by a unit positive test charge, placed at that point. The magnitude electric field at a point and the magnitude of the electric force on a charge q placed at that point are related as:

\rm F_e=qE.

Thus, the magnitude of the electric force on the small sphere is given by

\rm F_e = q\times \dfrac{\sigma }{2\epsilon_o}=\dfrac{q\sigma}{2\epsilon_o}.

The sheet and the small sphere both are positively charged, therefore, the electric force between these two is repulsive, which means, the direction of the electric force on the sphere is away from the sheet along the line which is perepndicular to the sheet and joining the sphere.

<h2>(b):</h2>

When the sphere is in equilibrium, the tension in the fiber is given by the resultant of the weight of the sphere and the electric force experienced by it as shown in the figure attached below.

According to the fig.,

\rm \tan \theta = \dfrac{F_e}{W}.

<em>where,</em>

  • \rm F_e = electric force on the sphere, acting along left.
  • \rm W = weight of the sphere, acting vertically downwards.

<em />

\rm F_e = \dfrac{q\sigma}{2\epsilon_o}\\\\W=mg\\\\Therefore,\\\\\tan\theta = \dfrac{\dfrac{q\sigma}{2\epsilon_o}}{mg}=\dfrac{q\sigma}{2mg\epsilon_o}.\\\Rightarrow \theta=\tan^{-1}\left ( \dfrac{q\sigma}{2mg\epsilon_o}\right ) .

g is the acceleration due to gravity.

6 0
3 years ago
What is the measure of a change in an object’s velocity?
tiny-mole [99]
It's a measure of the acceleration
6 0
2 years ago
Other questions:
  • A small particle starts from rest from the origin of an xy-coordinate system and travels in the xy-plane. Its acceleration in th
    12·2 answers
  • Which adaptation is likely to increase the chances of survival of an animal in a rainforest?
    14·2 answers
  • What is floatation?​
    15·2 answers
  • 4.
    13·1 answer
  • the average american receives 2.28 mSv dose equivalent from radon each year. Assuming you receive this dose, and it all comes fr
    12·1 answer
  • If the net force on a 75-N object is 375 N from the left, in what direction will the object move?
    7·2 answers
  • Asteroid Ida was photographed by the Galileo spacecraft in 1993, and the photograph revealed that the asteroid has a small moon,
    10·1 answer
  • One light-year is the distance light travels in one year. This distance is equal to 9.461 1015 m. After the sun, the star neares
    6·1 answer
  • A glacier is eroding the land over which it passes. It moves at a rate of 2 m per day. Currently, the glacier is 80 km from a sm
    11·1 answer
  • What is the centripetal force necessary to keep a 0.4 kg object rotating in a circular path
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!