Answer:
t = 5.59x10⁴ y
Explanation:
To calculate the time for the ¹⁴C drops to 1.02 decays/h, we need to use the next equation:
(1)
<em>where
: is the number of decays with time, A₀: is the initial activity, λ: is the decay constant and t: is the time.</em>
To find A₀ we can use the following equation:
(2)
<em>where N₀: is the initial number of particles of ¹⁴C in the 1.03g of the trees carbon </em>
From equation (2), the N₀ of the ¹⁴C in the trees carbon can be calculated as follows:
<em>where
: is the tree's carbon mass,
: is the Avogadro's number and
: is the ¹²C mass. </em>
Similarly, from equation (2) λ is:
<em>where t 1/2: is the half-life of ¹⁴C= 5700 years </em>

So, the initial activity A₀ is:
Finally, we can calculate the time from equation (1):
I hope it helps you!
B. is the answer.
C is not correct because the light is actually reflected off of an opaque object.
Answer:
b. 9.5°C
Explanation:
= Mass of ice = 50 g
= Initial temperature of water and Aluminum = 30°C
= Latent heat of fusion = 
= Mass of water = 200 g
= Specific heat of water = 4186 J/kg⋅°C
= Mass of Aluminum = 80 g
= Specific heat of Aluminum = 900 J/kg⋅°C
The equation of the system's heat exchange is given by

The final equilibrium temperature is 9.50022°C
Answer:
The average power the woman exerts is 0.5 kW
Explanation:
We note that power, P = The rate at which work is done = Work/Time
Work = Energy
The total work done is the potential energy gained which is the energy due to vertical displacement
Given that the vertical displacement = 5.0 m, we have
Total work done = Potential energy gained = Mass, m × Acceleration due to gravity, g × Vertical height, h
m = 51 kg
g = Constant = 9.81 m/s²
h = 5.0 m
Also, time, t = 5.0 s
Total work done = 51 kg × 9.81 m/s²× 5 m = 2501.55 kg·m²/s² = 2501.55 J
P = 2501.55 J/(5 s) = 500.31 J/s = 500.31 W ≈ 500 W = 0.5 kW.