Answer:
<h2>E) 52.5 cm</h2>
Explanation:
Step one:
given data
period T= 3 milliseconds= 0.003
velocity v= 175m/s
wave lenght λ=?
Step two:
we know that f=1/T
the expression relating period and wave lenght is
v=λ/T
λ=v*T
λ=175*0.002
λ=0.525m
to cm= 0.525*100
=52.5cm
The wavelength of the wave is E) 52.5 cm
It confirmed medeleeve's hypothesis (prediction) and showed the use of his table
Answer:
c. The coefficient of kinetic friction is less than the coefficient of static friction
Explanation:
When the box finally does break loose. Then the component of the box weight which is parallel to the board weight parallel component, is equal to the
.

For the box to acce;erate thee must be non-zero net force acting on the box parallel to the board. Or we can say,

Therefore the force of kinetic friction must be less than the force of static friction. Thus,

<h2>The frequency of driver is 700 Hz</h2>
Explanation:
The frequency of wave in a string is given by the relation
n = 
here n is the frequency
p is the number of antinodes and l is the length of string .
T is the tension in string and m is the mass per unit length
Thus 420 =
I
Now if there is 5 antinodes , the value of p = 5
Thus n =
II
Dividing II by I , we have
n/420 = 5/3
or n = 5/3 x 420 = 700 Hz
Answer:
W = 14.8 kJ
Explanation:
W = F S cos ∅
W = 4113 x 3.99 x cos 25.5
W = 16410.87 x 0.9025 = 14810.8 J or 14.8 kJ