1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Stolb23 [73]
2 years ago
15

An AC source of maximum voltage V0 = 30 V is connected to a resistor R = 50 Ω, an inductor L = 0.6 H, and a capacitor C = 20 µF.

What is the maximum charge on the capacitor when the frequency of the source is set to the resonance frequency of the circuit?
Physics
1 answer:
ivolga24 [154]2 years ago
6 0

Hello!

We can begin by solving for the resonance ANGULAR frequency of the circuit.

For an RCL circuit, the resonance angular frequency is given as:
\omega_0^2 = \frac{1}{LC}\\\\w_0 = \sqrt{\frac{1}{LC}}

ω₀ = resonance angular frequency (rad/s)

L = Inductance (0.6 H)
C = Capacitance (20 μF)

Plug in the values and solve.

\omega_0 = \sqrt{\frac{1}{(0.6)(0.00002)} } = 288.675 \frac{rad}{s}

For an AC power source, the output is usually expressed as:


V(t) = V_{max}sin(\omega_0 t})

So, using the appropriate values and setting the source angular frequency equivalent to the circuit's resonance angular frequency:


V(t) = 30sin(288.675t)

To find the maximum charge on the capacitor when the frequency of the source is equivalent to the resonance frequency of the circuit (or the angular frequencies are equal), we can begin by finding the maximum voltage across the capacitor.

To find this, however, we must solve for the maximum current across the circuit by finding the total impedance of the circuit. When the circuit is at resonance, the impedance is equivalent to the resistance of the RESISTOR.

So, solve for the maximum current in the circuit using Ohm's Law:

i = \frac{V}{R}

In this instance AT RESONANCE:

I_{Max} = \frac{V_Max}{R}\\\\I_{Max} = \frac{30}{50} = 0.6 A

Now, we must solve for the capacitive reactance in order to find the maximum voltage across the capacitor. Using the following equation for capacitive reactance:
X_c = \frac{1}{\omega C}\\\\X_c = \frac{1}{(288.675)(0.00002)} = 173.205 \Omega

Now that we found the maximum current and capacitive reactance, we can now solve for the maximum voltage across the capacitor:
V_{C, max} = X_C I_{Max}\\\\V_{C, max} = 173.205 * 0.6 = 103.923 V

Finally, we can easily solve for the maximum charge on the capacitor using the relationship:
C = \frac{Q}{V}\\\\Q = CV

Plug in the values solved for above.

Q = (0.00002)(103.923) = 0.00208 C = \boxed{2.078 mC}

You might be interested in
Which object has the greatest amount of kinetic energy?
EleoNora [17]
I think that the answer is A
4 0
3 years ago
A soccer player icks a rock horizontally off a 40m high cliff into a pool f water if the player hears the sound of the splash s
Semenov [28]

Answer:

v = 9.936 m/s

Explanation:

given,

height of cliff = 40 m

speed of sound = 343 m/s

assuming that time to reach the sound to the player = 3 s

now,

time taken to fall of ball

t = \sqrt{\dfrac{2s}{g}}

t = \sqrt{\dfrac{2\times 40}{9.8}}

t = 2.857 s

distance

d = v  x t

d = v x 2.875

time traveled by the sound before reaching the player

t_0 = t - t_{fall}

t_0 = 3 - 2.875

t_0 = 0.143 s

distance traveled by the wave in this time'

r = 0.143 x 343

r= 49.05 m

now,

we know.

d² + h² = r²

d² + 40² = 49.05²

d =28.387 m

v x 2.875=28.387 m

v = 9.936 m/s

7 0
3 years ago
what has more momentum, a baseball traveling at 4 m/s or a baseball traveling at 16m/s ? and which has more energy ?
Anna007 [38]
We know the formulas for momentum and energy. But they both involve the mass of
the object, and we don't know the mass of the baseball.  What can we do ?

It's not a catastrophe.  The question only asks which one is bigger.  If we're clever,
we can answer that without ever knowing how much the momentum or the energy
actually is.  We know that both baseballs have the same mass, so let's just call it
' M ' and not worry about what it really is.

<u>Momentum of anything = (mass) x (speed)</u>
Momentum of the first baseball = (M) x (4 m/s) = 4M
Momentum of the second one = (M) x (16 m/s) = 16M
The second baseball has 4 times as much momentum as the first one has.

<u>Kinetic energy of anything = 1/2 (mass) x (speed squared)</u>
KE of the first baseball = 1/2 (M) x (4 squared) = 8M
KE of the second one = 1/2 (M) x (16 squared) = 128M
The second baseball has 16 times as much kinetic energy as the first one has.
3 0
4 years ago
A 0.3 mm long invertebrate larva moves through 20oC water at 1.0 mm/s. You are creating an enlarged physical model of this larva
AleksandrR [38]

Answer:

Explanation:

For the problem, we should have same reynolds number

ρvd/mu = constant

1000×1×10⁻³×0.3×10⁻³/1.002×10⁻³ = 1400×0.5×d/600

d = 25.66 cm

5 0
4 years ago
Can water and wind change the shape of a mountain
Art [367]

Answer:

Yes, through erosion.

Explanation:

Water, wind, and ice shape earths surface. Water, wind, & ice move sediment to another area this process is called erosion.

Mark me brainliest, hope this helps

4 0
3 years ago
Other questions:
  • A 20 watt light bulb is left burning inside a refrigerator operating on a reverse Carnot cycle. If the refrigerator also draws 2
    11·1 answer
  • The most massive planet in the solar system is
    15·1 answer
  • Two factors which cause global climate change are listed below.
    15·2 answers
  • After a large snowstorm, you shovel 2,500 kilograms of snow off of your sidewalk in half an hour. You lift
    7·1 answer
  • a sprinter running a 100m dash leaves the starting block and accelerates to a maximum velocity of 11m/s at 6s into the race. the
    11·1 answer
  • How fast is a ball going when it hits the ground after being dropped from a
    8·1 answer
  • How can you tell the direction a river flows
    10·1 answer
  • Andre listed some properties of electromagnetic waves.
    12·2 answers
  • What does the area under the velocity-time graph represent.
    9·1 answer
  • When Suzanne Pogell wanted to learn to sail, but she could find no one to teach her because men were the ones who sailed, and wo
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!