Answer:
a) The module's acceleration in a vertical takeoff from the Moon will be 
b) Then we can say that a thrust of
won't be able to lift off the module from the Earth because it's smaller than the module's weight (
).
Explanation:
a) During a vertical takeoff, the sum of the forces in the vertical axis will be equal to mass times the module's acceleration. In this this case, the thrust of the module's engines and the total module's weight are the only vertical forces. (In the Moon, the module's weight will be equal to its mass times the Moon's gravity acceleration)

Where:
thrust 
module's mass 
moon's gravity acceleration 
module's acceleration during takeoff
Then, we can find the acceleration like this:


The module's acceleration in a vertical takeoff from the Moon will be 
b) To takeoff, the module's engines must generate a thrust bigger than the module's weight, which will be its mass times the Earth's gravity acceleration.

Then we can say that a thrust of
won't be able to lift off the module from the Earth because it's smaller than the module's weight (
).
1). c ... 2). d ... 3). a ... 4). d ... 5). c ... 6). a
7). b-mass ... c-m/s ... d-Newton's 1st ... e-Newton's 2nd
The ratio of the speed of light v in a medium to the speed of light in a vacuum c is called its Refractive Index n
v/c=n
Different substances have different Refractive Indices (plural of Index). Values are always bigger than 1.
Refractive index of water is 1.33
Refractive index of glass is about 1.4
According to Georgia State University, gravitational potential energy<span> is the energy an object possesses because of its position in a gravitational field. This is most commonly in reference to an object near the surface of the Earth, where the gravitational acceleration is assumed to be constant at about 9.8 m/s2.</span>