Answer:
mass of CO = 210.42 g
mass in three significant figures = 210. g
Explanation:
Given data:
mass of Fe2O3 = 0.400 Kg
mass of CO= ?
Solution:
chemical equation:
Fe2O3 + 3CO → 2Fe + 3CO2
Now we will calculate the molar mass of Fe2O3 and CO.
Molar mass of Fe2O3 = (55.845 × 2) + (16 × 3) = 159.69 g/mol
Molar mass of CO = 12+ 16 = 28 g/mol
now we will convert the kg of Fe2O3 in g.
mass of Fe2O3 = 0.400 kg × 1000 = 400 g
number of moles of Fe2O3 = 400 g/ 159.69 g/mol = 2.505 mol
mass of CO = moles of Fe2O3 × 3( molar mass of CO)
mass of CO = 2.505 mol × 84 g/mol
mass of CO = 210.42 g
mass in three significant figures = 210. g
The element that gains electrons, becomes reduced.
While the one which loses electrons, becomes oxidized.
In this equation,
CH₃OH + Cr₂O₇²⁻---- --> CH₂O + Cr³⁺.
By balancing the equation, we will get:
3CH₃OH + Cr₂O₇²⁻ + 8H⁺ --> 3CH₂O + 2Cr³⁺ + 7H₂O
Here the oxidation state of Cr changes from +6 to +3 that is it is being reduced thus serving as a oxidizing agent while other element retain their charges.
Here Cr₂O₇²⁻ is reduced while CH₃OH is oxidized.
So Cr₂O₇²⁻ serves as a oxidizing agent, while CH₃OH serves as reducing agent .
Is it 8.06?
Or 58.57?
Don't get mad if there wrong!!
But please let me know if it's right or wrong tho.
You didn’t show the cylinder containing water, so I created one that you can use as a model (see image).
The water level was originally at 37 mL.
Then you added the ball, and it displaced its volume of water.
The new volume reading is 52 mL, so
Volume of ball = volume of displaced water = 52 mL – 37 mL = 15 mL.
Answer:
19.6 J
Step-by-step explanation:
Before the ball is dropped, it has a <em>potential energy
</em>
PE = mgh
PE = 0.2 × 10 × 9.8
PE = 19.6 J
Just before the ball hits the ground, the potential energy has been converted into kinetic (<em>mechanical</em>) energy.
KE = 19.6 J