Answer : The molarity of
solution is, 0.352 M
Explanation :
First we have to calculate the moles of 

Molar mass of
= 278.1 g/mol

Now we have to calculate the moles of 
The balanced chemical equation is:

From the balanced reaction we conclude that
As, 1 mole of
produced from 1 mole of 
So, 0.07041 mole of
produced from 0.07041 mole of 
Now we have to calculate the molarity of 


Therefore, the molarity of
solution is, 0.352 M
Answer:
the true statement is... The pH of the weak acid will be higher than the pH of the strong acid
Explanation:
pH is a measured of the extent to which acids dissociate into ions when plced in aqueous solution.
Strong acid dissociate near-completely, and weak acids barely dissociate.
At equal concentrations, a strong acid will have a lower pH than a weak acid, since the strong one will donate more proton to the solution.
Answer: An atom with 6 protons, 5 electrons, and 7 neutrons
Explanation: In this case, neutrons do not matter as they have a charge of 0, or no charge. A proton has a charge of +1 and an electron has a charge of -1. Since there are 6 protons, the total charge of the protons would be +6. Since there are 5 electrons the total charge of the electrons would be -5. +6 - 5 would result in a charge of +1. This means that this atom would have an overall charge of + 1. Basically, if there is one more proton than electron, then the overall charge of the atom will be +1 but if there is one more electron than proton, then the overall charge of the atom will be -1.
Ok first, we have to create a balanced equation for the dissolution of nitrous acid.
HNO2 <-> H(+) + NO2(-)
Next, create an ICE table
HNO2 <--> H+ NO2-
[]i 0.139M 0M 0M
Δ[] -x +x +x
[]f 0.139-x x x
Then, using the concentration equation, you get
4.5x10^-4 = [H+][NO2-]/[HNO2]
4.5x10^-4 = x*x / .139 - x
However, because the Ka value for nitrous acid is lower than 10^-3, we can assume the amount it dissociates is negligable,
assume 0.139-x ≈ 0.139
4.5x10^-4 = x^2/0.139
Then, we solve for x by first multiplying both sides by 0.139 and then taking the square root of both sides.
We get the final concentrations of [H+] and [NO2-] to be x, which equals 0.007M.
Then to find percent dissociation, you do final concentration/initial concentration.
0.007M/0.139M = .0503 or
≈5.03% dissociation.