Answer:
350 g dye
0.705 mol
2.9 × 10⁴ L
Explanation:
The lethal dose 50 (LD50) for the dye is 5000 mg dye/ 1 kg body weight. The amount of dye that would be needed to reach the LD50 of a 70 kg person is:
70 kg body weight × (5000 mg dye/ 1 kg body weight) = 3.5 × 10⁵ mg dye = 350 g dye
The molar mass of the dye is 496.42 g/mol. The moles represented by 350 g are:
350 g × (1 mol / 496.42 g) = 0.705 mol
The concentration of Red #40 dye in a sports drink is around 12 mg/L. The volume of drink required to achieve this mass of the dye is:
3.5 × 10⁵ mg × (1 L / 12 mg) = 2.9 × 10⁴ L
Explanation:



▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

<h2>yes can you. do this</h2>
As you increase in elevation, there is less air above you thus the pressure decreases. As the pressure decreases, air molecules spread out further (i.e. air expands) and the temperature decreases. If the humidity is at 100 percent (because it's snowing), the temperature decreases more slowly with height.
Answer:
The answer is
<h2>4.54 g/cm³</h2>
Explanation:
The density of a substance can be found by using the formula

From the question
mass of rock = 454 g
volume = 100 cm³
The density of the rock is

We have the final answer as
<h3>4.54 g/cm³</h3>
Hope this helps you