Answer:
The answer to your question is: 0.25 l
Explanation:
Data
P1 = 1 atm
V1 = 0.5 l
P2 =2 atm
V2 = ?
T = constant
Formula
V1P1 = V2P2
Clear V2 from the formula
V2 = V1P1/P2
Substitution
V2 = (0.5)(1)/2 substitution
= 0.25 l result
First, we'll identify the beaker containing pure water as follows:
We'll take equal masses from each of the three beakers and measure the mass of each.
We'll then identify the density of each by using the rule : density =mass/volume
Pure water will be the liquid having density equal to 1 gm/cm^3
Then, we'll differentiate between the salt and sugar solution by measuring the conductivity of each solution. Salt solution is a good conductor while solution of sugar is a bad conductor.
Answer is: 4,4 grams <span>of carbon dioxide gas would be produced.
</span>Chemical reaction: CaCO₃ + 2HCl → CaCl₂ + CO₂ + H₂O.
m(CaCO₃) = 10 g.
n(CaCO₃) = 10 g ÷ 100 g/mol.
n(CaCO₃) = 0,1 mol.
From chemical reaction: n(CaCO₃) : n(CO₂) = 1 : 1.
n(CO₂) = 0,1 mol.
m(CO₂) = n(CO₂) · M(CO₂).
m(CO₂) = 0,1 mol· 44 g/mol.
m(CO₂) = 4,4 g.
Free energy is the answer i hope this helped
C₆H₆ is benzene which has a molar mass of 78 g/mol. When benzene is burned, the reaction is called combustion. The heat produced in this reaction is called the heat of combustion. For benzene, the heat of combustion is -3271 kJ/mol.
Heat of benzene = (8.7 g)(1 mol/78 g)(-3271 kJ/mol) = -364.84 kJ
By conservation of energy,
Heat of benzene = - Heat of water
where
Heat of Water = mCp(Tf - T₀)
where Cp for water is 4.187 kJ/kg·°C
Thus,
-364.84 kJ = -(5691 g)(1 kg/1000 g)(4.187 kJ/kg·°C)(Tf - 21)
<em>Tf = 36.31°C</em>