Answers:
a) 30 m/s
b) 480 N
Explanation:
The rest of the question is written below:
a. What is the final speed of the falcon and pigeon?
b. What is the average force on the pigeon during the impact?
<h3>a) Final speed</h3>
This part can be solved by the Conservation of linear momentum principle, which establishes the initial momentum before the collision must be equal to the final momentum after the collision:
(1)
Being:
Where:
the mas of the peregrine falcon
the initial speed of the falcon
is the mass of the pigeon
the initial speed of the pigeon (at rest)
the final speed of the system falcon-pigeon
Then:
(2)
Finding :
(3)
(4)
(5) This is the final speed
<h3>b) Force on the pigeon</h3>
In this part we will use the following equation:
(6)
Where:
is the force exerted on the pigeon
is the time
is the pigeon's change in momentum
Then:
(7)
(8) Since
Substituting (8) in (6):
(9)
(10)
Finally:
Answer:
15.2 s
Explanation:
Convert hp to W:
55.0 hp × 746 W/hp = 41,030 W
Power = energy / time
41030 W = 6.22×10⁵ J / t
t = 15.2 s
Answer:
4.4×10⁻⁷ Coulomb
Explanation:
V = Voltage = 5.8 kV
d = Potential distance = 2.8 mm = 0.0028 m
A = Area = 0.3×0.08 = 0.024 m²
ε₀ = permittivity constant in a Vacuum= 8.85×10⁻¹² F/m
Magnitude of charge transferred between a carpet and a shoe is 4.4×10⁻⁷ Coulomb.
Question 1: C Question 2: B, Hope this Helps!
Answer:
e. Both the acceleration and net force on the car point inward.
Explanation:
If no net force acts on the car, the car must drive in a straight line, at constant speed.
As the acceleration is defined as the rate of change of the velocity vector, this means that it can produce either a change in the magnitude of the velocity (the speed) or in the direction.
In order to the car can follow a circular trajectory, it must be subjected to an acceleration, that must go inward, trying to take the car towards the center of the circle.
The net force that causes this acceleration, aims inward, and is called the centripetal force.
It is not a different type of force, it can be a friction force, a tension force, a normal force, etc., as needed.