For this problem, we use the formula for sensible heat which is written below:
Q= mCpΔT
where Q is the energy
Cp is the specific heat capacity
ΔT is the temperature difference
Q = (55.5 g)(<span>0.214 cal/g</span>·°C)(48.6°C- 23°C)
<em>Q = 304.05 cal</em>
Each shell can contain only a fixed number of electrons: The first shell
can hold up to two electrons, the second shell can hold up to eight (2 +
6) electrons, the third shell can hold up to18 (2 + 6 + 10) and so on.
The general formula is that the nth shell can in principle hold up to
2(n2) electrons.
Answer:
No
Explanation: I don’t know what to do
Answer:
The sharing of electrons between a water molecule that forms four hydrogen bonds with the other four water molecules:
Explanation:
The hydrogen bond is a weak electrostatic force of attraction that exists between a covalently bonded H-atom and a highly electronegative atom like N,O or F.
In the case of the water molecule,
the highly electronegative atom is Oxygen and the intermolecular hydrogen bond in water is as shown below:
Thus H-bond is a weak electrostatic attraction formed between H-atom and O-atom in water.
Answer:
2 AgNO₃(aq) + Ca(BrO₃)₂(aq) ⇒ Ca(NO₃)₂(aq) + 2 AgBrO₃(s)
2 Ag⁺(aq) + 2 NO₃⁻(aq) + Ca²⁺(aq) + 2 BrO₃⁻(aq) ⇒ Ca²⁺(aq) + 2 NO₃⁻(aq) + 2 AgBrO₃(s)
2 Ag⁺(aq) + 2 BrO₃⁻(aq) ⇒ 2 AgBrO₃(s)
Explanation:
The question is missing but I think it must be about the chemical equations.
Let's consider the molecular equation that occurs when a solution of silver nitrate and a solution of calcium bromate react.
2 AgNO₃(aq) + Ca(BrO₃)₂(aq) ⇒ Ca(NO₃)₂(aq) + 2 AgBrO₃(s)
The complete ionic equation includes all the ions and the insoluble species.
2 Ag⁺(aq) + 2 NO₃⁻(aq) + Ca²⁺(aq) + 2 BrO₃⁻(aq) ⇒ Ca²⁺(aq) + 2 NO₃⁻(aq) + 2 AgBrO₃(s)
The net ionic equation includes only the ions that participate in the reaction and the insoluble species.
2 Ag⁺(aq) + 2 BrO₃⁻(aq) ⇒ 2 AgBrO₃(s)