Answer:
The answers to the questions are given below.
Explanation:
According to Le Chatelier's principle, if an external constrain such as change in concentration, temperature or pressure is imposed on a chemical system in equilibrium, the equilibrium will shift in order to neutralize the effect.
A. Effective of removing ammonia, NH3.
N2(g) + 3H2(g) ⇌ 2NH3(g)
Removing NH3 from the reaction simply means we are left with more reactants and no product. Therefore, the reactant will react to produce the product. Hence, the equilibrium position will shift to the right.
2. Effect of removing H2
N2(g) + 3H2(g) ⇌ 2NH3(g)
Remoing H2 simply means we have more products and less reactant. Therefore, the product will be convert to reactant. Hence, the equilibrium position will shift to the left.
C. Effect of adding a catalyst.
N2(g) + 3H2(g) ⇌ 2NH3(g)
Catalyst does not affect the equilibrium position. It only creates an alternative path to arrive at the product within a short time. Hence, it has no effect.
The answer is more protons than electrons.
Answer:
Percent Composition of 41K = 6.7302%
Explanation:
The explination is in the image.
Answer:
-
Explanation:
Water molecules pull the sodium and chloride ions apart, breaking the ionic bond that held them together. After the salt compounds are pulled apart, the sodium and chloride atoms are surrounded by water molecules, as this diagram shows. Once this happens, the salt is dissolved, resulting in a homogeneous solution.
The first thing we need to do here is to recognize the unit of molarity and the units of the given percentage of nitric acid.
Molarity is mol HNO3 / L of solution. This is our aim
The given percentage is 0.68 g HNO3/ g solution
multiplying this with density to convert g solution into mL solution and dividing with the molecular weight of HNO3 (63 g/mol) to convert g HNO3 to mol. Therefore we obtain
0.016 mol/ mL or 16.23 mol/ L (M)