Answer:
To find time, use this: t = d/s ( time = distance ÷ speed)
Answer:
b. 0,99atm
c. Answer is in the explanation
d. Answer is in the explanation
Explanation:
b. Using Gay-Lussac's law:
P₁T₂ = P₂T₁
P₁: 0,70 atm; T₂: 425K; P₂: ??; T₁: 299K
0,70atm×425K / 299K = <em>0,99 atm</em>
c. Using kinetic molecular theory, the increasing of temperature increases the kinetic energy of gas particles and if kinetic energy increases, the pressure increases. That means the increasing of temperature increases the pressure in the system.
d. Now, the increases in kinetic energy of gases increase the collisions betwen particles. As these intermolecular forces that are not taken into account in ideal gas law, the observed pressure will be different to the pressure predicted by ideal gas law.
I hope it helps!
Answer:
<h2>The Alkali metal halide may precipitate or there may be no change at all</h2>
Explanation:
Alkali metal cations are positively charged. Halogen anions are negatively charged. When a solution of Alkali metal cations is added to a solution of Halogen anions, there are two possibilities :
- The alkali metal halide( salt formed from reation of the two ions) may precipitate if the Ionic product is higher than the Solubility product.
- However, if it can remain in the solution, it will remain so. No chemical changes happen with respect to these both ions. Nothing willl happen.
There is no reaction happening in either of the cases because both species are already in ionic form before addition, hence they continue to be in this form.
Answer: sphere interaction
The ocean absorbing excess carbon dioxide from the atmosphere in order to maintain balance is an example of sphere interaction. The different spheres like lithosphere, hydrosphere, atmosphere, and geosphere interact with one another naturally to achieve equilibrium in the environment.