Answer:
The best practices officers should use when securing a crime scene is option D
D. They should secure a larger area than the actual crime scene
Explanation:
Officers should secure the scene by limiting access to the scene and movement within the scene
Three layers of secure perimeter should be used by officers to secure a crime scene, with the smallest inside perimeter being the actual crime scene
Next to the crime scene, is an inner perimeter which is the designated meeting point/command post
The outer perimeter, which is the third outer layer is to keep onlookers, passerby, and nonessential personnel at safety and out of the actual crime scene.
Answer:
9.79740949850 moles
Explanation:
- 1 mole = Avogardo's Number <<6.022 E 23 <<particles, atoms, etc.>>
- This problem can be solved using dimensional analysis by multiplying atoms (5.9E24 atoms) by (1) mole and then dividing the number by Avogardo's number (6.022 E 23 atoms).
- Note: E = * 10
Side Note: Please let me know if you need any clarifications about this!
Answer:
0.558mole of SO₃
Explanation:
Given parameters:
Molar mass of SO₃ = 80.0632g/mol
Mass of S = 17.9g
Molar mass of S = 32.065g/mol
Number of moles of O₂ = 0.157mole
Molar mass of O₂ = 31.9988g/mol
Unknown:
Maximum amount of SO₃
Solution
We need to write the proper reaction equation.
2S + 3O₂ → 2SO₃
We should bear in mind that the extent of this reaction relies on the reactant that is in short supply i.e limiting reagent. Here the limiting reagent is the Sulfur, S. The oxygen gas would be in excess since it is readily availbale.
So we simply compare the molar relationship between sulfur and product formed to solve the problem:
First, find the number of moles of Sulfur, S:
Number of moles of S = 
Number of moles of S =
= 0.558mole
Now to find the maximum amount of SO₃ formed, compare the moles of reactant to the product:
2 mole of Sulfur produced 2 mole of SO₃
Therefore; 0.558mole of sulfur will produce 0.558mole of SO₃
The speed of light is 299,792,458 meters per second in vacuum.
It's somewhat slower in any material substance, and different in
each substance.
(That's 186,282.4 miles per second.)