Answer:it all above
Explanation:
it all above because all the answer are truth so it all above
Answer:
15.75 grams of HNO3 was used and dissolved in 2.5 liters of solvent, to make a 0.10 M solution
Explanation:
Step 1: Data given
Nitric acid = HNO3
Molar mass of H = 1.01 g/mol
Molar mass of N = 14.0 g/mol
Molar mass O = 16.0 g/mol
Number of moles nitric acid (HNO3) = 0.25 moles
Molairty = 0.10 M
Step 2: Calculate molar mass of nitric acid
Molar mass HNO3 = Molar mass H + molar mass N + molar mass (3*O)
Molar mass HNO3 = 1.01 + 14.0 + 3*16.0
Molar mass HNO3 = 63.01 g/mol
Step 3: Calculate mass of solute use
Mass HNO3 = moles HNO3 * molar mass HNO3
Mass HNO3 = 0.25 moles * 63.01 g/mol
Mass HNO3 = 15.75 grams
15.75 grams of HNO3 was used and dissolved in 2.5 liters of solvent, to make a 0.10 M solution
What I think is the charge of nucleus is the proton+neutron
Answer: No
Explanation: It's not balanced because four oxygen atoms in H2SO4, whereas there are 5 oxygen atoms in the reactants side. Also, there's more hydrogen atoms on the reactants side.
I hope this helps!
Answer:
Approximately
, assuming that this acid is monoprotic.
Explanation:
Assume that this acid is monoprotic. Let
denote this acid.
.
Initial concentration of
without any dissociation:
.
After
of that was dissociated, the concentration of both
and
(conjugate base of this acid) would become:
.
Concentration of
in the solution after dissociation:
.
Let
,
, and
denote the concentration (in
or
) of the corresponding species at equilibrium. Calculate the acid dissociation constant
for
, under the assumption that this acid is monoprotic:
.