Answer: D, splitting water into hydrogen and oxygen is a chemical change.
Answer:
See explanation
Explanation:
The boiling point of a substance is affected by the nature of bonding in the molecule as well as the nature of intermolecular forces between molecules of the substance.
2-methylpropane has only pure covalent and nonpolar C-C and C-H bonds. As a result of this, the molecule is nonpolar and the only intermolecular forces present are weak dispersion forces. Therefore, 2-methylpropane has a very low boiling point.
As for 2-iodo-2-methylpropane, there is a polar C-I bond. This now implies that the intermolecular forces present are both dispersion forces and dipole interaction. As a result of the presence of stronger dipole interaction between 2-iodo-2-methylpropane molecules, the compound has a higher boiling point than 2-methylpropane.
Answer:
Na2SO4 means: two moles sodium (45.98 g), one mole sulfur (32.06 g), and four moles oxygen (64.00 g) combine to form one mole of sodium sulfate (142.04 g).
Explanation:
Ionic bonds usually occur between metal and nonmetal ions. For example, sodium (Na), a metal, and chloride (Cl), a nonmetal, form an ionic bond to make NaCl. In a covalent bond, the atoms bond by sharing electrons. Covalent bonds usually occur between nonmetals.
Answer:
molarity of acid =0.0132 M
Explanation:
We are considering that the unknown acid is monoprotic. Let the acid is HA.
The reaction between NaOH and acid will be:

Thus one mole of acid will react with one mole of base.
The moles of base reacted = molarity of NaOH X volume of NaOH
The volume of NaOH used = Final burette reading - Initial reading
Volume of NaOH used = 22.50-0.55= 21.95 mL
Moles of NaOH = 0.1517X21.95=3.33 mmole
The moles of acid reacted = 3.33 mmole
The molarity of acid will be = 