The heat of solution is -51.8 kJ/mol
<h3>What is the heat of solution?</h3>
We know that in a calorimeter, there is no loss or gain of energy. It is a good example of a closed system.
Number of moles of KOH = 11.9-g/56 g/mol = 0.21 moles
Temperature rise = 26.0 ∘c
Mass of the water = 100.0 grams
Heat capacity = 4.184 j/g⋅°c
Then;
ΔH = mcθ
ΔH = 100g * 4.184 j/g⋅°c * 26.0 ∘c = 10.88 kJ
Heat of solution = -(10.88 kJ/ 0.21 moles) = -51.8 kJ/mol
Learn more about heat of solution:brainly.com/question/24243878
#SPJ1
Answer: the statements in 1 and 2 are true of IR spectroscopic region.
1. In general, the IR FUNDAMENTAL region has a longer wavelength region than the region we call the ultraviolet (uv) region.
2. We can sense some of the frequencies of the FUNDAMENTAL region of the IR as heat
Explanation:
IR has energy value between 10^-5eV - 10^-2eVwhile
UV has energy value of 4eV - 300eV
IR has low photon energy and cannot alter atoms and molecules while UV has sufficient energy to iodize atoms therefore UV has a higher energy band.
Infrared light falls just outside the visible spectrum, beyond the edge of what we can see as red.
Answer:
See the answer and explanation below , please.
Explanation:
A conjugate base is defined as that formed after an acid donates its proton.
For each article, a continuation of the conjugate bases (highlighted in bold), for dissociation in water:
a) HF + H20 --> F- + H30+
b) H20+ H20 --> OH- + H30+
C)H2PO3- + H20--> HPO3 2- + H30+
d) HSO4- + H20 --> SO4 2- + H30+
E) HCL02 + H20 --> CLO02 - + H30+
There are 50.9415 grams in vanadium
hope that helps :)