1. Calcium hydrogen phosphate
2. Iron(II) Hydrogen Sulfate
3. Calcium hydroxide
4. Aluminum chloride hydroxide
Answer:
60 cm³ of water
Explanation:
We'll begin by calculating the volume of the diluted solution. This can be obtained as follow:
Concentration of stock solution (C₁) = 17 M
Volume of stock solution (V₁) = 25 cm³
Concentration of diluted solution (C₂) = 5 M
Volume of diluted solution (V₂) =?
C₁V₁ = C₂V₂
17 × 25 = 5 × V₂
425 = 5 × V₂
Divide both side by 5
V₂ = 425 / 5
V₂ = 85 cm³
Thus, the volume of the diluted solution is 85 cm³
Finally, we shall determine the volume of water needed to dilute the solution. This can be obtained as follow:
Volume of stock solution (V₁) = 25 cm³
Volume of diluted solution (V₂) = 85 cm³
Volume of water =?
Volume of water = V₂ – V₁
Volume of water = 85 – 25
Volume of water = 60 cm³
Therefore, 60 cm³ of water is needed to dilute the solution.
Answer:
6 different frequencies
Explanation:
From energy level 1 to 2 is one frequency, from energy level 1 to 3 is one frequency and From energy level 1 to 4 is one frequency. So, we have a total of 3 frequencies for transition from energy level 1.
From energy level 2 to 3 is one frequency and from energy level 2 to 4 is one frequency. So, we have a total of 2 frequencies for transition from energy level 2.
From energy level 3 to 4 is one frequency.
So we have a total of 3 + 2 + 1 different frequencies = 6 different frequencies.
Note that the reverse process for each step produces the same frequency as the step in consideration.
I don't think so. No way that I know anyway. It it could be done then the need for more coal to be mined would have stopped hundreds of years ago. Once coal is burned, it forms water and carbon dioxide (essentially) with some sulfur oxides.
How do you put that back together again. It's a little like humpty dumpty.
<span>3 elements
Nitrogen
Hydrogen
Oxygen
2 nitrogen 4 hydrogen and 3 oxygens
there are only 3 different elements</span>