The molarity of the solution of H₃PO₄ needed to neutralize the KOH solution is 0.35 M
<h3>Balanced equation </h3>
H₃PO₄ + 3KOH —> K₃PO₄ + 3H₂O
From the balanced equation above,
- The mole ratio of the acid, H₃PO₄ (nA) = 1
- The mole ratio of the base, KOH (nB) = 3
<h3>How to determine the molarity of H₃PO₄ </h3>
- Volume of acid, H₃PO₄ (Va) = 10.2 mL
- Molarity of base, Ca(OH)₂ (Mb) = 0.2 M
- Volume of base, Ca(OH)₂ (Vb) = 53.5 mL
- Molarity of acid, H₃PO₄ (Ma) =?
MaVa / MbVb = nA / nB
(Ma × 10.2) / (0.2 × 53.5) = 1 / 3
(Ma × 10.2) / 10.7 = 1 / 3
Cross multiply
Ma × 10.2 × 3 = 10.7
Ma × 30.6 = 10.7
Divide both side by 30.6
Ma = 10.7 / 30.6
Ma = 0.35 M
Learn more about titration:
brainly.com/question/14356286
#SPJ1
Explanation:
Cr=35.880/51=0.73≈0.7
P=21.076/31=0.67≈0.7
O=43.543/16=2.71
Divide each by 0.7 u get
Cr=1 ,P =1, O=4
Empirical formula is CrPO4
Answer:
a) I, II, and III
Explanation:
For the first statement;
Solvation, is the process of attraction and association of molecules of a solvent with molecules or ions of a solute. if the solvent is water, we call this process hydration.
This means the statement is TRUE.
For the second statement;
The negatively-charged side of the water molecules are attracted to positively-charged ions. In the case of water, the oxygen end is the negatively charged side of water. This means the statement is TRUE.
For the third statement;
The positively-charged side of the water molecules are attracted to the negatively-charged chloride ions. In the case of water, the hydrogen end is the positively charged side of water. This means the statement is TRUE.
Going through the options, we can tell that the correct option is option A.
Answer:
Some varieties of potato, such as Russet and King Edward, are more suitable for baking than others, owing to their size and consistency. Despite the popular misconception that potatoes are fattening, baked potatoes can be part of a healthy diet.[2]