Explanation:
F = 20N m= m1 a=10m/s²
m=m2 a=5m/s²
F = ma
<u>for the first one</u><u>:</u><u> </u>
f=m1 × a
20 = m1 ×10
20=10m1
m1=20/10
m1=2
<u>for</u><u> </u><u>the</u><u> </u><u>second</u><u> </u><u>one</u><u> </u><u>:</u>
f=m2×a
20=m2×5
m2= 20/5
m2= 4
since F=ma
F=(m1+m2) ×a
F =(4+2)×a
F =6×a
F=20(from the question above )
20=6×a
a=20/6
a=3.33
Answer:
v₁f = 0.5714 m/s (→)
v₂f = 2.5714 m/s (→)
e = 1
It was a perfectly elastic collision.
Explanation:
m₁ = m
m₂ = 6m₁ = 6m
v₁i = 4 m/s
v₂i = 2 m/s
v₁f = ((m₁ – m₂) / (m₁ + m₂)) v₁i + ((2m₂) / (m₁ + m₂)) v₂i
v₁f = ((m – 6m) / (m + 6m)) * (4) + ((2*6m) / (m + 6m)) * (2)
v₁f = 0.5714 m/s (→)
v₂f = ((2m₁) / (m₁ + m₂)) v₁i + ((m₂ – m₁) / (m₁ + m₂)) v₂i
v₂f = ((2m) / (m + 6m)) * (4) + ((6m -m) / (m + 6m)) * (2)
v₂f = 2.5714 m/s (→)
e = - (v₁f - v₂f) / (v₁i - v₂i) ⇒ e = - (0.5714 - 2.5714) / (4 - 2) = 1
It was a perfectly elastic collision.
Motaion would be it have a good day
Answer:
I believe the answer is esophagus
The answer is A. The outer lines change as it moves