Hey again!
Ok..
Now... The melting Point of this solid is 90°C.
Meaning That as soon as it gets to this temp... It STARTS Melting.
So at that temp... It still has some solid parts in it.
You can say its a Solid Liquid Mixture.
Additional Heat being applied at that point is not raising the temperature;rather its used in breaking the bonds in the solid. This is the Fusion stage.
After Fusion...It'd then Be a Pure Liquid with no solids in it.
So
Q'=MC∆0----- This is the heat needed to take the solid's temp from 30°c - 90°c
Q"=ml ----- This is the heat used in breaking the bonds holding the solids in the solid-liquid phase.
So
Q= Q' + Q"
Q= mc∆0 + ml
∆0 = 90°c - 30°c = 60°c
Q= 2.5(390)(60) + (2.5)(4000)
Q=6.9 x 10⁴Joules
Answer:
32 m/s
Explanation:
The speed of a bus is 30 m/s due East wrt the passenger
He also sees a passenger on the bus walking to the back at 2 m/s.
We need to find the passenger's velocity relative to the bus. As the observer sees that the bus and the passenger are moving in opposite direction. Let v is the relative velocity. So,
v = 30 m/s + 2 m/s
v = 32 m/s
Hence, the passenger's velocity relative to the bus is 32 m/s.
<span>two filters with vertical polarization</span>
Answer:
Explanation:
Let's analyze the situation presented in order to know which answer is correct.
When the stick collides with the puck, it exerts a force for a certain time and discants. / After this time the horizontal force decreases to zero and the disk continues to move by the action of the initial velocity on the x axis and the acceleration of gravity on the y axis.
Therefore, after the collision, the only force that acts on the disk is the gravitational attractive force (WEIGHT), directed on the axis and in a negative direction.
The correct answer is:
C) Since there is no frictional force exerted on the puck, a normal force is not exerted on the puck, but the gravitational force is exerted on the puck