This pattern of question is always coming up. Since we can't easily guess, then let us set up simultaneous equation for the statements.
let the two numbers be x and y.
Multiply to 44. x*y = 44 ..........(a)
Add up to 12. x + y = 12 .........(b)
From (b)
y = 12 - x .......(c)
Substitute (c) into (a)
x*y = 44
x*(12 - x) = 44
12x - x² = 44
-x² + 12x = 44
-x² + 12x - 44 = 0.
Multiply both sides by -1
-1(-x² + 12x - 44) = -1*0
x² - 12x + 44 = 0.
This does not look factorizable, so let us just use quadratic formula
comparing to ax² + bx + c = 0, x² - 12x + 44 = 0, a = 1, b = -12, c = 44
x = (-b + √(b² - 4ac)) /2a or (-b - √(b² - 4ac)) /2a
x = (-(-12) + √((-12)² - 4*1*44) )/ (2*1)
x = (12 + √(144 - 176) )/ 2
x = (12 + √-32 )/ 2
√-32 = √(-1 *32) = √-1 * √32 = i * √(16 *2) = i*√16 *√2 = i*4*√2 = 4i√2
Where i is a complex number. Note the equation has two values. We shall include the second, that has negative sign before the square root.
x = (12 + √-32 )/ 2 or (12 - √-32 )/ 2
x = (12 + 4i√2 )/ 2 (12 - 4i√2 )/ 2
x = 12/2 + (4i√2)/2 12/2 - (4i√2)/2
x = 6 + 2i√2 or 6 - 2i√2
Recall equation (c):
y = 12 - x, When x = 6 + 2i√2, y = 12 - (6 + 2i√2) = 12 - 6 - 2i√2 = 6 - 2i√2
When x = 6 - 2i√2, y = 12 - (6 - 2i√2) = 12 - 6 + 2i√2 = 6 + 2i√2
x = 6 + 2i√2, y = 6 - 2i√2
x = 6 - 2i√2, y = 6 + 2i√2
Therefore the two numbers that multiply to 44 and add up to 12 are:
6 + 2i√2 and 6 - 2i√2
Answer:
Step-by-step explanation:
He missed 20 shots
Write 25% as 25100.
25100 of 80 = 25100 × 80.
Therefore, the answer is 20.
I assume you mean a^5 divided by a^4. This is a rule that applies to all exponents in that when you divide exponents, you subtract the top from the bottom. So, 5-4 is 1 and that would the answer is b
Answer:

Step-by-step explanation:
The Side-Angle-Side method cana only be used when information given shows that an included angle which is between two sides of a ∆, as well as the two sides of the ∆ are congruent to the included side and two sides of the other ∆.
Thus, since John already knows that
and
, therefore, an additional information showing that the angle between
and
in ∆ABC is congruent to the angle between
and
in ∆DEF.
For John to prove that ∆ABC is congruent to ∆DEF using the Side-Angle-Side method, the additional information needed would be
.
See attachment for the diagram that has been drawn with the necessary information needed for John to prove that ∆ABC is congruent to ∆DEF.