Answer:
449730.879 cal/g
Explanation:
Given data:
Mass of sample = 4.9 g
Change in temperature = 2.08 °C (275.23 k)
Heat capacity of calorimeter = 33.50 KJ . K⁻¹
Solution:
C(candy) = Q/m
Q = C (calorimeter) × ΔT
C(candy) = C (calorimeter) × ΔT / m
C(candy) = 33.50 KJ . K⁻¹ × 275.23 K / 4.90 g
C(candy) = 9220.205 KJ / 4.90 g
C(candy) = 1881.674 KJ / g
It is known that,
1 KJ /g = 239.006 cal/g
1881.674 × 239.006 = 449730.879 cal/g
Answer:
Rate ≅ 1.01 M/s (3 sig. figs.)
Explanation:
Given A(g) + B(g) => AB(g)
Rate = k[A(g)][B(g)]²
at Rate (1) = 0.239M/s = k[2.00M][2.00M]² => k = (0.239M/s) / (2.00M)(2.00M)²
k = 0.29875 M⁻²·s⁻¹
Rate (2) = k[A(g)][B(g)]² = (0.29875M⁻²·s⁻¹)(4.81M)(2.65M)² = 1.009124472 M/s (calc. ans.) ≅ 1.01 M/s (3 sig. figs.)
<span>Mantle convection is the slow creeping motion of Earth's rocky mantle caused by convection currents carrying heat from the interior of the earth to the surface. It is one of 3 driving forces that causes tectonic plates to move around the Earth's surface.</span>
Answer:
The empty space between the atomic cloud of an atom and its nucleus is just that: empty space, or vacuum. ... Electrons are thus 'spread out' quite a bit in their orbits about the nucleus. In fact, the wave-functions for electrons in s-orbitals about a nucleus actually extend all the way down into the nucleus itself.
Answer:
It is balanced.
Explanation:
You have the same amount of atoms on both sides. 2 carbon and 4 oxygen.