Carbon -14 and Carbon 12 are the two substances geologists use in radiocarbon dating.
Answer: Option B
<u>Explanation:
</u>
Radiocarbon dating denotes the determination process of the age of fossils of plants or animals based on the ratio of carbon atoms 14 to 12. Carbon naturally exists in two non-radioactive isotopes, Carbon-12 and Carbon-13 and one radioactive isotope carbon 14. The carbon 14 gets released on continuous cosmic reaction with atmospheric nitrogen.
These carbon 14 will be absorbed by the living plants and from the plants. Then, it will enter inside the animals which consume the plants. But once the plants and animals died, they ceased to intake carbon-14. In their living state, the ratios of carbon atoms 14 to 12 in them tends to similar to the ratio in atmosphere.
But after they die, the ratio of C-14 to C-12 will be varying from the ratio of C-14 to C-12 in atmosphere as the concentration of C-14 will be decreasing in the dead animals and plants. Thus using this ratio, geologists can find the fossil's age.
Because liquids cant be condensed the way that gasses can for example in a tank of argon you can put 20 cubic feet because it can be be condensed but you could not fit 20 cubic feet of water because it can not be packed together .
This lesson is the first in a three-part series that addresses a concept that is central to the understanding of the water cycle—that water is able to take many forms but is still water. This series of lessons is designed to prepare students to understand that most substances may exist as solids, liquids, or gases depending on the temperature, pressure, and nature of that substance. This knowledge is critical to understanding that water in our world is constantly cycling as a solid, liquid, or gas.
In these lessons, students will observe, measure, and describe water as it changes state. It is important to note that students at this level "...should become familiar with the freezing of water and melting of ice (with no change in weight), the disappearance of wetness into the air, and the appearance of water on cold surfaces. Evaporation and condensation will mean nothing different from disappearance and appearance, perhaps for several years, until students begin to understand that the evaporated water is still present in the form of invisibly small molecules." (Benchmarks for Science Literacy<span>, </span>pp. 66-67.)
In this lesson, students explore how water can change from a solid to a liquid and then back again.
<span>In </span>Water 2: Disappearing Water, students will focus on the concept that water can go back and forth from one form to another and the amount of water will remain the same.
Water 3: Melting and Freezing<span> allows students to investigate what happens to the amount of different substances as they change from a solid to a liquid or a liquid to a solid.</span>
B. positive because y increases as x does. It it were negative y would decrease as x increases and it would be 0 if y stayed the same as x increases.