Answer:
The ΔG° is 29 kJ and the reaction is favored towards reactant.
Explanation:
Based on the given information, the ΔH°rxn or enthalpy change is 41.2 kJ, the ΔS°rxn or change in entropy is 42.1 J/K or 42.1 * 10⁻³ kJ/K. The temperature given is 289 K. Now the Gibbs Free energy change can be calculated by using the formula,
ΔG° = ΔH°rxn - TΔS°rxn
= 41.2 kJ - 289 K × 42.1 × 10⁻³ kJ/K
= 41.2 kJ - 12.2 kJ
= 29 kJ
As ΔG° of the reaction is positive, therefore, the reaction is favored towards reactant.
Answer:
Two factors that might have a affect of which copper sulphate mineral will occur at a given location is:
A. Copper sulphate high solubility in water
B. Also it binds nicely with the sediments or the crystal.
Explanation:
As it is mentioned here that copper sulphate can be crystallized as an anhydrate which means that their is no waterin those crystals or can be as of those three different hydrates whose crystal structure varies with the amount of water present in it.
The four forms are also given of the copper sulphate are:
- Bonatite
- Boothite
- Chalcanthite
- Chalcocyanite
So, the two factors that might give an affect which type of copper sulphate mineral willoccur at a given location is:
A. The copper sulphate high solubility in water.
B. It binds extremely nicely with the sediments or say to the crystal. It is also regulated by plants.
Answer:
No precipitate is formed.
Explanation:
Hello,
In this case, given the dissociation reaction of magnesium fluoride:

And the undergoing chemical reaction:

We need to compute the yielded moles of magnesium fluoride, but first we need to identify the limiting reactant for which we compute the available moles of magnesium chloride:

Next, the moles of magnesium chloride consumed by the sodium fluoride:

Thus, less moles are consumed by the NaF, for which the moles of formed magnesium fluoride are:

Next, since the magnesium fluoride to magnesium and fluoride ions is in a 1:1 and 1:2 molar ratio, the concentrations of such ions are:
![[Mg^{2+}]=\frac{3x10^{-4}molMg^{+2}}{(0.3+0.5)L} =3.75x10^{-4}M](https://tex.z-dn.net/?f=%5BMg%5E%7B2%2B%7D%5D%3D%5Cfrac%7B3x10%5E%7B-4%7DmolMg%5E%7B%2B2%7D%7D%7B%280.3%2B0.5%29L%7D%20%3D3.75x10%5E%7B-4%7DM)
![[F^-]=\frac{2*3x10^{-4}molMg^{+2}}{(0.3+0.5)L} =7.5x10^{-4}M](https://tex.z-dn.net/?f=%5BF%5E-%5D%3D%5Cfrac%7B2%2A3x10%5E%7B-4%7DmolMg%5E%7B%2B2%7D%7D%7B%280.3%2B0.5%29L%7D%20%3D7.5x10%5E%7B-4%7DM)
Thereby, the reaction quotient is:

In such a way, since Q<Ksp we say that the ions tend to be formed, so no precipitate is formed.
Regards.
D. One chimp cleaning and grooming the hair of another chimp
Answer:
The atomic number is the number of the elements inside the periodic table and the mass is the weight or a number under the elements.
Explanation:
Correct me if I am wrong