Answer:
k = 0.0306 min-1
Explanation:
The table is given as;
Time, Concentration
0 1.48
5 1.27
10 0.98
15 0.84
The integrated rate law for a first order reaction is given as;
ln [A] = -kt + ln [Ao]
where;
[A] = Final Concentration
[Ao] = Initial Concentration
k = rate constant
t = time
In the table, taking the first two sets of values;
t = 5
k = ?
[Ao] = 1.48
[A] = 1.27
Inserting into the equation;
ln(1.27) = - k (5) + ln(1.48)
ln(1.27) - ln(1.48) = -5k
-0.1530 = -5k
k = -0.1530 / -5
k = 0.0306 min-1
I am going to go with,
0.10 g/mL
0.0700 g/mL
0.0447 g/mL
I don't know if this is the correct answer, but I am 80% sure that it may be.
:) :)
Answer:
Regions of the Electromagnetic Spectrum
Wavelength (m)Frequency (Hz)Radio> 1 x 10-1< 3 x 109Microwave1 x 10-3 - 1 x 10-13 x 109 - 3 x 1011Infrared7 x 10-7 - 1 x 10-33 x 1011 - 4 x 1014Optical4 x 10-7 - 7 x 10-74 x 1014 - 7.5 x 1014
An element with 8 valence electrons is Neon (Ne).
Ps: Any element under group 18 has 8 valence electrons except for Helium (He).
Answer:
The correct answer is option a.
Explanation:

Equilibrium concentration cadmium ions = ![[Cd^{2+}]=0.0585 M](https://tex.z-dn.net/?f=%5BCd%5E%7B2%2B%7D%5D%3D0.0585%20M)
Equilibrium concentration fluoride ions = ![[F^{-}]=0.117 M](https://tex.z-dn.net/?f=%5BF%5E%7B-%7D%5D%3D0.117%20M)
Molar solubility is the maximum concentration of salt present in water in ionic form beyond that no more salt will exist in its ionic form and will settle down in bottom of the solution.
The molar solubility of the solid cadmium fluoride = 0.0585 M
..[1]

Due to addition of sodium fluoride will increase concentration of fluoride in the solution.And due to common ion effect the equilibrium will shift in backward direction in [1], that is precipitation of more cadmium fluoride.
Hence, decrease in solubility will be observed.