Answer: c living in a camber in an under water habitat
Explanation:
The longer you spend reading and thinking about this question,
the more defective it appears.
-- In each case, the amount of work done is determined by the strength
of
the force AND by the distance the skateboard rolls <em><u>while you're still
</u></em>
<em><u>applying the force</u>. </em>Without some more or different information, the total
distance the skateboard rolls may or may not tell how much work was done
to it.<em>
</em>
-- We know that the forces are equal, but we don't know anything about
how far each one rolled <em>while the force continued</em>. All we know is that
one force must have been removed.
-- If one skateboard moves a few feet and comes to a stop, then you
must have stopped pushing it at some time before it stopped, otherwise
it would have kept going.
-- How far did that one roll while you were still pushing it ?
-- Did you also stop pushing the other skateboard at some point, or
did you stick with that one?
-- Did each skateboard both roll the same distance while you continued pushing it ?
I don't think we know enough about the experimental set-up and methods
to decide which skateboard had more work done to it.
We first determine the vertex by using the formula,<span>-b/2a = vertex, in order to get the values for the t-coordinate. That is why we got
</span>
v_y=26.5 sin(53)=21.163v_x=26.5 cos(53)=15.948
then
let x=0since you are going to land on a 3m tally=-.5(9.8)t^2+ 21.163*t
y=0=-4.9t+21.163t=4.31
vx*4.31= total distance travelled=68.88m
Then for the first wheel, you have 15.948m=vxdetermine the time when he reaches 23 meters, that is
23/15.948=1.44218 sec
substitute t with1.44218 sec, then determine the height.
h(1.44218)=20.329
determine vertex by using a graphing calculatort=2.1594s h=22.85m
using the time value of the vertex, determine horizontal distance travelled
34.438m away from cannon