Complete Question
A wave is described by y(x,t) = 0.1 sin(3x + 10t), where x is in meters, y is in centimetres and t is in seconds. The angular wave frequency is
Answer:
The value is 
Explanation:
From the question we are told that
The equation describing the wave is y(x,t) = 0.1 sin(3x + 10t)
Generally the sinusoidal equation representing the motion of a wave is mathematically represented as

Where w is the angular frequency
Now comparing this equation with that given we see that

<span>0.52%
First, let's convert that speed into m/s.
150 km/h * 1000 m/km / 3600 s/h = 41.667 m/s
Now let's see how much time gravity has to work on the ball. Divide the distance by the speed.
18 m / 41.667 m/s = 0.431996544 s
Now multiply that time by the gravitational acceleration to see what the vertical component to the ball's speed that gravity adds.
0.431996544 s * 9.8 m/s^2 = 4.233566131 m/s
Use the pythagorean theorem to get the new velocity of the ball.
sqrt(41.667^2 + 4.234^2) = 41.882 m/s
Finally, let's see what the difference is
(41.882 - 41.667)/41.667 = 0.005159959 = 0.5159959%
Rounding to 2 figures, gives 0.52%</span>
The instant it was dropped, the ball had zero speed.
After falling for 1 second, its speed was 9.8 m/s straight down (gravity).
Its AVERAGE speed for that 1 second was (1/2) (0 + 9.8) = 4.9 m/s.
Falling for 1 second at an average speed of 4.9 m/s, is covered <em>4.9 meters</em>.
ANYTHING you drop does that, if air resistance doesn't hold it back.
Strange as it may seem, the object would keep moving, in a straight line and at the same speed, until it came near another object. Its momentum and kinetic energy would never change. It might continue like that for a billion years or more.
Have a look at Newton's first law of motion.