Answer:
Explanation:
The x component is the adjacent side making up the given angle (39.4)
The vector is the hypotenuse.
The definition of the cos (x) is adjacent / hypotenuse.
cos(39.4) = adjacent / 47.3 Multiply both sides by 47.3
47.3 * cos(39.4) = adjacent Cos(39.4) = 0.7727
adjacent = 36.55
Answer:
Diamagnetic
Explanation:
Hunds rule states that electrons occupy each orbital singly first before pairing takes place in degenerate orbitals. This implies that the most stable arrangement of electrons in an orbital is one in which there is the greatest number of parallel spins(unpaired electrons).
For vanadium V ion, there are 18 electrons which will be arranged as follows;
1s2 2s2 2p6 3s2 3p6.
All the electrons present are spin paired hence the ion is expected to be diamagnetic.
PART A)
Conductivity of insulator is very small as there is no free electrons to conduct the current trough that medium
So here number of conduction electrons are very less in insulators
PART B)
Resistance is the property of a conducting medium which will oppose the flow of current trough it
Resistance of wire directly depends on its length so resistance of long wire will be more than the resistance of short wire
Resistance inversely depends on the area so if a wire has more crossectional area then its resistance must be small
PART C)
power of light bulb is defined as rate of electrical energy
it is given by formula
P = i V
here we know that
i = 1.46 A
V = 120 volts
so power is given as


Answer:
The specific heat capacity of the zinc metal measured in this experiment is 0.427 J/g.°C
Explanation:
From the experimental data, the water loses heat because its initial temperature is greater than the final temperature of the mixture. On the other hand, the zinc metal gains heat because its initial temperature is less than the final temperature of the mixture
Heat loss by water = Heat gain by zinc metal
m1C1(T1 - T3) = m2C2(T3 - T2)
m1 is mass of water = 55.4 g
C1 is specific heat capacity of water = 4.2 J/g.°C
m2 is mass of zinc metal = 23.4 g
C2 is specific heat capacity of zinc metal
T1 is the initial temperature of water = 99.61 °C
T2 is the initial temperature of zinc metal = 21.6 °C
T3 is the final temperature of the mixture = 96.4 °C
55.4×4.2(99.61 - 96.4) = 23.4×C2(96.4 - 21.6)
746.9028 = 1750.32C2
C2 = 746.9028/1750.32 = 0.427 J/g.°C