Answer:
Explanation:
a)
Firstly to calculate the total mass of the can before the metal was lowered we need to add the mass of the eureka can and the mass of the water in the can. We don't know the mass of the water but we can easily find if we know the volume of the can. In order to calculate the volume we would have to multiply the area of the cross section by the height. So we do the following.
100
x 10cm = 1000
Now in order to find the mass that water has in this case we have to multiply the water's density by the volume, and so we get....
x 1000
= 1000g or 1kg
Knowing this, we now can calculate the total mass of the can before the metal was lowered, by adding the mass of the water to the mass of the can. So we get....
1000g + 100g = 1100g or 1.1kg
b)
The volume of the water that over flowed will be equal to the volume of the metal piece (since when we add the metal piece, the metal piece will force out the same volume of water as itself, to understand this more deeply you can read the about "Archimedes principle"). Knowing this we just have to calculate the volume of the metal piece an that will be the answer. So this time in order to find volume we will have to divide the total mass of the metal piece by its density. So we get....
20g ÷
= 2.5 
c)
Now to find out the total mass of the can after the metal piece was lowered we would have to add the mass of the can itself, mass of the water inside the can, and the mass of the metal piece. We know the mass of the can, and the metal piece but we don't know the mass of the water because when we lowered the metal piece some of the water overflowed, and as a result the mass of the water changed. So now we just have to find the mass of the water in the can keeping in mind the fact that 2.5
overflowed. So now we the same process as in number a) just with a few adjustments.
x (1000
- 2.5
) = 997.5g
So now that we know the mass of the water in the can after we added the metal piece we can add all the three masses together (the mass of the can. the mass of the water, and the mass of the metal piece) and get the answer.
100g + 997.5g + 20g = 1117.5g or 1.1175kg
Answer: 11,100 ft/s^2
1) Constant acceleration=> uniformly accelerated motion.
2) Formula for uniformly accelerated motion:
Vf = Vo + at
3) Data:
Vo = 1,100 ft/s
a = 1,000 ft/s^2
t = 10.0 s
4) Solution:
Vf = 1,100 ft/s + 1,000 ft/s^2 * 10.0 s = 1,100 ft/s + 10,000 ft/s
Vf = 11,100 ft/s
Answer:
<h3>The answer is 2.5 g/cm³</h3>
Explanation:
The density of a substance can be found by using the formula

From the question we have

We have the final answer as
<h3>2.5 g/cm³</h3>
Hope this helps you
Answer:
A. respiration.
Explanation:
Cellular respiration can be defined as a series of metabolic reactions that typically occur in cells so as to produce energy in the form of adenosine triphosphate (ATP). During cellular respiration, high energy intermediates are created that can then be oxidized to make adenosine triphosphate (ATP). Therefore, the intermediary products are produced at the glycolysis and citric acid cycle stage.
Additionally, mitochondria provides all the energy required in the cell by transforming energy forms through series of chemical reactions; breaking down of glucose into Adenosine Triphosphate (ATP) used for providing energy for cellular activities in the body of living organisms.
Basically, oxygen goes into the body of a living organism such as plants, humans and animals when they breathe while glucose is absorbed by the body when they eat.
Hence, the conversion of sugar to energy in the presence of oxygen is respiration.
If you know an element’s atomic number, you will learn the number of protons and electrons. The atomic number is equal to the number or protons and electrons. You can also find the number of neutrons, by subtracting the atomic mass from the atomic number.
For example, Fluorine’s atomic number is 9, and its atomic mass is 19. So, the number of electrons and protons in fluorine is 9. The number of neutrons the is equal to 19-9. Thus, Fluorine has 10 neutrons.
Hope this helps :)