Answer: |F| = 1.28 x 10⁵ N
Explanation:
an impulse results in a change of momentum
FΔt = mΔv
F = m(vf - vi)/t
F = 2000(0 - 32) / 0.5
F = -128,000
|F| = 1.28 x 10⁵ N
Answer:
0.71121 km/s
Explanation:
= Velocity of planet initially = 54 km/s
= Distance from star = 0.54 AU
= Final velocity of planet
= Final distance from star = 41 AU
As the angular momentum of the system is conserved

When the exoplanet is at its farthest distance from the star the speed is 0.71121 km/s.
Answer:
Flow rate 2.34 m3/s
Diameter 0.754 m
Explanation:
Assuming steady flow, the volume flow rate along the pipe will always be constant, and equals to the product of flow speed and cross-section area.
The area at the well head is

So the volume flow rate along the pipe is

We can use the similar logic to find the cross-section area at the refinery

The radius of the pipe at the refinery is:



So the diameter is twice the radius = 0.38*2 = 0.754m