Answer:
At a distance of 1376.49 candle emits 0.2 watt power
Explanation:
Distance between Sun and earth 
Sun emits a power of 
Power emitted by candle = 0.20 watt
We know that brightness is given by

So 



So at a distance of 1376.49 candle emits 0.2 watt power
Answer:
(B) 13.9 m
(C) 1.06 s
Explanation:
Given:
v₀ = 5.2 m/s
y₀ = 12.5 m
(A) The acceleration in free fall is -9.8 m/s².
(B) At maximum height, v = 0 m/s.
v² = v₀² + 2aΔy
(0 m/s)² = (5.2 m/s)² + 2 (-9.8 m/s²) (y − 12.5 m)
y = 13.9 m
(C) When the shell returns to a height of 12.5 m, the final velocity v is -5.2 m/s.
v = at + v₀
-5.2 m/s = (-9.8 m/s²) t + 5.2 m/s
t = 1.06 s
The answer is A. Energy from <span>various energy sources, such as wind or from burning fossil fuels, is used to spin the blades of the turbine. The turbine then powers a generator, which produces electricity.
Works on simple principle of the turbine blades translation of energy sources causing the mechanical spin of the blades which is connected to a rotor which spins the main shaft of generator thus producing electricity.</span>
Answer:
Not all of the time, it can also depend on the strength of the magnet.
Explanation:
say you have a small very strong magnet, that might work just as well as a large but week magnet.
The force that must be exerted on the outside wheel to lift the anchor at constant speed is 6.925 x 10⁵ N.
<h3>Force exerted outside the wheel</h3>
The force exerted on the outside of the wheel can be determined by applying the principle of conservation of angular momentum as shown below.
∑τ = 0
- Let the distance traveled by the load = 1.5 m
- Let the radius of the wheel or position of the force = 0.45 m
∑τ = R(mg) - r(F)
rF = R(mg)
0.45F = 1.5(21,200 x 9.8)
F = 6.925 x 10⁵ N.
Thus, the force that must be exerted on the outside wheel to lift the anchor at constant speed is 6.925 x 10⁵ N.
Learn more about angular momentum here: brainly.com/question/7538238