Potential energy is measured using formula Ep=mgh
m=mass (kg)
g= acceleration due to gravity (which is 9.8 on earth)
h= height in metres above ground
For this question
m=0.1
g=9.8
h=1
So Ep=0.1(9.8)(1)
Ep=0.98 Joules
When it is dropped all of this potential energy is converted into kinetic energy which can be measured using formula
Ek=1/2m(v^2) (v=final velocity)
Since all potential energy in this q is converted to kinetic we know Ek=0.98Joules and our mass is the same (0.1kg)
So when we sub everything in we get
0.98=1/2(0.1)(v^2)
0.98=0.05(v^2)||divide both side by 0.05
19.6=v^2 ||square root both sides
v=4.4 m/s
The electric field generated by a point charge is given by:

where

is the Coulomb's constant
Q is the charge
r is the distance from the charge
We want to know the net electric field at the midpoint between the two charges, so at a distance of r=5.0 cm=0.05 m from each of them.
Let's calculate first the electric field generated by the positive charge at that point:

where the positive sign means its direction is away from the charge.
while the electric field generated by the negative charge is:

where the negative sign means its direction is toward the charge.
If we assume that the positive charge is on the left and the negative charge is on the right, we see that E1 is directed to the right, and E2 is directed to the right as well. This means that the net electric field at the midpoint between the two charges is just the sum of the two fields:
D=at²
441m=(5*9.81m/s²)(t²)
t²=441/(5*9.81)
t≈√8.99
t≈3 sec
Answer:
156.8 Watts
Explanation:
From the question given above, the following data were obtained:
Mass (m) = 10 kg
Height (h) = 8 m
Time (t) = 5 s
Power (P) =?
Next, we shall determine the energy used by the motor to raise the block. This can be obtained as follow:
Mass (m) = 10 kg
Height (h) = 8 m
Acceleration due to gravity (g) = 9.8 m/s²
Energy (E) =?
E = mgh
E = 10 × 9. 8 × 8
E = 784 J
Finally, we shall determine the power output of the motor. This can be obtained as illustrated below:
Time (t) = 5 s
Energy (E) = 784 J
Power (P) =?
P = E/t
P = 784 / 5
P = 156.8 Watts
Therefore, the power output of the motor is 156.8 Watts