Answer:
options A and C
Explanation:
Since, the spheres are of same size and rotational speed of the sphere are not dependent on their masses. So, both the sphere will reach the bottom of the at the same time with the same speed. But their kinetic energies are different.
So, options A and C are correct.
(a) 3675 N
Assuming that the acceleration of the rocket is in the horizontal direction, we can use Newton's second law to solve this part:

where
is the horizontal component of the force
m is the mass of the passenger
is the horizontal component of the acceleration
Here we have
m = 75.0 kg

Substituting,

(b) 3748 N, 11.3 degrees above horizontal
In this part, we also have to take into account the forces acting along the vertical direction. In fact, the seat exerts a reaction force (R) which is equal in magnitude and opposite in direction to the weight of the passenger:

where we used
as acceleration of gravity.
So, this is the vertical component of the force exerted by the seat on the passenger:

and therefore the magnitude of the net force is

And the direction is given by

Answer:
An object moves with constant velocity .
Explanation:
•2nd law
C. The strong nuclear force is only attractive and acts over shorter distances
Covalent bonds form when electrons are shared between atoms and are attracted by the nuclei of both atoms. In pure covalent bonds, the electrons are shared equally. In polar covalent bonds, the electrons are shared unequally, as one atom exerts a stronger force of attraction on the electrons than the other.