1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Stells [14]
2 years ago
5

When a baseball is hit, it travels around 65 mps (meters per second). the mass of the baseball is 0.145 kg. what is the kinetic

energy of the baseball?
Physics
1 answer:
nika2105 [10]2 years ago
4 0

Answer:

306J

Explanation:

The formula for kinetic energy is given as ½mv².

Using this, we get our answer by substituting the values into the formula.

½ × 0.145kg × 65m/s

= 306.31J

can be rounded off to 306J

You might be interested in
A 500 kg block is attached to a horizontal spring that is at its equilibrium length, and whose force constant is 30 N/m. The blo
m_a_m_a [10]

Answer:

x = 0.396 m

Explanation:

The best way to solve this problem is to divide it into two parts: one for the clash of the putty with the block and another when the system (putty + block) compresses it is   spring

Data the putty has a mass m1 and velocity vo1, the block has a mass m2 .  t's start using the moment to find the system speed.

Let's form a system consisting of putty and block; For this system the forces during the crash are internal and the moment is preserved. Let's write the moment before the crash

    p₀ = m1 v₀₁

Moment after shock

    p_{f} = (m1 + m2) v_{f}

   p₀ = p_{f}

   m1 v₀₁ = (m1 + m2) v_{f}

  v_{f} = v₀₁ m1 / (m1 + m2)

   v_{f}= 4.4 600 / (600 + 500)

  v_{f} = 2.4 m / s

With this speed the putty + block system compresses the spring, let's use energy conservation for this second part, write the mechanical energy before and after compressing the spring

Before compressing the spring

   Em₀ = K = ½ (m1 + m2) v_{f}²

After compressing the spring

   E_{mf} = Ke = ½ k x²

As there is no rubbing the energy is conserved

   Em₀ = E_{mf}

   ½ (m1 + m2) v_{f}² = = ½ k x²

   x = v_{f} √ (k / (m1 + m2))

   x = 2.4 √ (11/3000)

   x = 0.396 m

7 0
3 years ago
A) an electron has an initial speed of 226000 m/s. if it undergoes an acceleration of 4.0 x 1014 m/s2, how long will it take to
KIM [24]

initial speed of 226000 m/s

acceleration of 4.0 x 1014 m/s2,

speed of 781000 m/s

What is Acceleration?

  • Acceleration is a rate of change of velocity with respect to time with respect to direction and speed.
  • A point or an object moving in a straight line is accelerated if it speeds up or slows down.
  • Acceleration formula can be written as,

                    a = (v - u ) / t m/s²

As we have to find the time taken, the formula can be altered as,

t = \frac{v-u}{a}

where, t - time taken to reach a final speed

v - final velocity

u - initial velocity

a - acceleration.

Substituting all the given values,

t =\frac{781000 - 226000} {4* 1014}

= 1.3875 × 10⁻⁹ seconds.

So, taken to reach the final speed is found to be 1.3 × 10⁻⁹ 8iH..

7 0
2 years ago
A. How long does it take light to travel through a 3.0-mm-thick piece of window glass?
hodyreva [135]

Answer:

a) 1.517\times10^{-11} s

b) 3.41 mm

Explanation:

a)

We take the speed of light, c = 3.0\times10^8 m/s and the refractive index of glass as 1.517.

Speed = distance/time

Time = distance/speed

Refractive index, n = speed of light in vacuum / speed of light in medium

n=\dfrac{c}{s}

s=\dfrac{c}{n}

t=\dfrac{d}{c/n}

t=\dfrac{dn}{c}

t=\dfrac{3\times10^{-3}\times1.517}{3.0\times10^8}

t=1.517\times10^{-11}

b)

We take the refractive index of water as 1.333.

Speed in water = speed in vacuum / refractive index of water

Distance = speed * time

d=s\times t

d=\dfrac{c}{n_w}\times \dfrac{3\times10^{-3}\times1.517}{c}

d=\dfrac{3\times10^{-3}\times 1.517}{1.333}

d = 3.41 mm

6 0
4 years ago
A 60-W, 120-V light bulb and a 200-W, 120-V light bulb are connected in series across a 240-V line. Assume that the resistance o
gulaghasi [49]

A. 0.77 A

Using the relationship:

P=\frac{V^2}{R}

where P is the power, V is the voltage, and R the resistance, we can find the resistance of each bulb.

For the first light bulb, P = 60 W and V = 120 V, so the resistance is

R_1=\frac{V^2}{P}=\frac{(120 V)^2}{60 W}=240 \Omega

For the second light bulb, P = 200 W and V = 120 V, so the resistance is

R_1=\frac{V^2}{P}=\frac{(120 V)^2}{200 W}=72 \Omega

The two light bulbs are connected in series, so their equivalent resistance is

R=R_1 + R_2 = 240 \Omega + 72 \Omega =312 \Omega

The two light bulbs are connected to a voltage of

V  = 240 V

So we can find the current through the two bulbs by using Ohm's law:

I=\frac{V}{R}=\frac{240 V}{312 \Omega}=0.77 A

B. 142.3 W

The power dissipated in the first bulb is given by:

P_1=I^2 R_1

where

I = 0.77 A is the current

R_1 = 240 \Omega is the resistance of the bulb

Substituting numbers, we get

P_1 = (0.77 A)^2 (240 \Omega)=142.3 W

C. 42.7 W

The power dissipated in the second bulb is given by:

P_2=I^2 R_2

where

I = 0.77 A is the current

R_2 = 72 \Omega is the resistance of the bulb

Substituting numbers, we get

P_2 = (0.77 A)^2 (72 \Omega)=42.7 W

D. The 60-W bulb burns out very quickly

The power dissipated by the resistance of each light bulb is equal to:

P=\frac{E}{t}

where

E is the amount of energy dissipated

t is the time interval

From part B and C we see that the 60 W bulb dissipates more power (142.3 W) than the 200-W bulb (42.7 W). This means that the first bulb dissipates energy faster than the second bulb, so it also burns out faster.

7 0
3 years ago
How often is water added to the Earth system?
rosijanka [135]
<span>Water is never added to earth system. Water forever remains in the water cycle on earth, so it goes from the ground, to the air, to the rain, to the sea, and round and round continuously. This cycle means that there does not need to be new water added to the earth, because it recycles any water that already exists of its own accord.</span>
4 0
3 years ago
Other questions:
  • A wave with a frequency of 60 Hz is traveling along a string whose linear mass density is 230 g/m and whose tension is 65 N. If
    5·1 answer
  • The book that set off the women's movement in the 1960s was written by Betty Friedan and was called? The Masculine Mystique Sile
    8·1 answer
  • A simple pendulum, 1.00 m in length, is released from rest when the support string is at an angle of 35.0 from the vertical. Wh
    11·1 answer
  • Suppose a piece of dust has fallen on a CD. If the spin rate of the CD is 500 rpm, and the piece of dust is 4.3 cm from the cent
    6·1 answer
  • In which type of chemical reaction is heat absorbed from the surroundings?
    12·2 answers
  • Why does increasing the heat under a pan of boiling water not decrease the cooking time for hard-boiled eggs? (Select all that a
    9·1 answer
  • Which of the following is NOT included in an APA citation for a scholarly journal article? Please explain answer.
    13·1 answer
  • Time period of a simple pendulum is measured at karachi, what change will occur in the time period ,if it is measured on mount e
    10·1 answer
  • How much kinetic energy is required to break through?
    6·1 answer
  • When we jump off a boat towards the shore the boat moves back why​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!