Answer:
The right answer is 8.9 x 10^-3 M/min
Explanation:
A → B
-d [A]/dt = K [A]
ΔA/Δt = - (C2 -C1)/t2 - t1
= - (0.11 - 0.91)/90
= 8.9 x 10^-3 M/min
Galileo Galilei is one of the key figures in the history of Science, being the first to apply the experimental-mathematical scientific method. He carried out experiments and careful observations in kinematics (his studies on the trajectory of projectiles are famous) and dynamics (it should be noted his careful experiments with inclined planes), establishing the first law of Dynamics (which Newton will later collect and refine in his Principles); and in Astronomy, with which he could unequivocally support the heliocentric theory.
His experiments were addressed by methodologies that allowed him to precisely find his mathematical calculations and to verify theories he was developing over time. His manuscripts were key to disseminate the applied method and extrapolate them to other scientific areas.
Therefore the correct answer is C.
A. 60 miles
B. 5 hours
Unless you are looking for slope, in which case the answer is different
radio waves bc they have the longest wave lenthgs in a magnetic spectrum
Answer:

Explanation:
When the unpolarized light passes through the first polarizer, only the component of the light parallel to the axis of the polarizer passes through.
Therefore, after the first polarizer, the intensity of light passing through it is halved, so the intensity after the first polarizer is:

Then, the light passes through the second polarizer. In this case, the intensity of the light passing through the 2nd polarizer is given by Malus' law:

where
is the angle between the axes of the two polarizer
Here we have

So the intensity after the 2nd polarizer is

And substituting the expression for I1, we find:
