Answer:
D
Explanation:
This will not change the weight and therefore not change the inertia
When the planet is closest to the Sun, speed v and kinetic energy are the highest, and gravitational potential energy is the lowest. When the planet moves farther away, the speed and kinetic energy decrease, and the gravitational potential energy increases.
Answer:
sorry kilqngqn kolqng ng point
Explanation:
sorry tlaga please pa heart nlang please
Answer:
Point 2.
Explanation:
Potential energy is simply defined as the energy stored in an object due to its position. It is can be represented mathematically by:
P.E = mgh
Where:
P.E is the potential energy.
m is the mass of the object.
g is acceleration due to gravity.
h is the height to which the object is located.
From the above equation, we can thus say that potential energy depends on the height of the object since the mass of the object is always constant i.e as the height of the object increase, the potential energy also increases and as the height of the object decrease, the potential energy also decreases.
Now, considering the diagram in the question given, we can see that point 2 is the lowest height to which the rider is located. At this point i.e point 2, the rider will have the least potential energy.