Answer:
a) Initial angular speed = 30 rad/s
b) Final angular speed = 70 rad/s
Explanation:
a) We have equation of motion s = ut + 0.5at²
Here s = 400 radians
t = 8 s
a = 5 rad/s²
Substituting
400 = u x 8 + 0.5 x 5 x 8²
u = 30 rad/s
Initial angular speed = 30 rad/s
b) We have equation of motion v = u + at
Here u = 30 rad/s
t = 8 s
a = 5 rad/s²
Substituting
v = 30 + 5 x 8 = 70 rad/s
Final angular speed = 70 rad/s
Answer:
0.699 L of the fluid will overflow
Explanation:
We know that the change in volume ΔV = V₀β(T₂ - T₁) where V₀ = volume of radiator = 21.1 L, β = coefficient of volume expansion of fluid = 400 × 10⁻⁶/°C
and T₁ = initial temperature of radiator = 12.2°C and T₂ = final temperature of radiator = 95.0°C
Substituting these values into the equation, we have
ΔV = V₀β(T₂ - T₁)
= 21.1 L × 400 × 10⁻⁶/°C × (95.0°C - 12.2°C)
= 21.1 L × 400 × 10⁻⁶/°C × 82.8°C = 698832 × 10⁻⁶ L
= 0.698832 L
≅ 0.699 L = 0.7 L to the nearest tenth litre
So, 0.699 L of the fluid will overflow
The answer to this question is A - 25 N
Answer:
Temperature of the gas molecules is 7.96 x 10⁴ K
Explanation:
Given :
Ions accelerated through voltage, V = 10.3 volts
The work done to change the position of singly charged gas ions is given by the relation :
W = q x V
Here q is charge of the ions and its value is 1.6 x 10⁻¹⁹ C.
Average kinetic energy of gas molecules is given by the relation:
K.E. = 
Here T is temperature and k is Boltzmann constant and its value is 1.38 x 10⁻²³ J/K.
According to the problem, the average kinetic energy of gas is equal to the work done to move the singly charged ions, i.e. ,
K.E. = W

Rearrange the above equation in terms of T :

Substitute the suitable values in the above equation.

T = 7.96 x 10⁴ K