The distance travel is 69.5 meters.
<u>Explanation:</u>
Given datas are as follows
Speed = 27.8 meters / second
Time = 2.5 seconds
The formula to calculate the speed using distance and time is
Speed = Distance ÷ Time (units)
Then Distance = Speed × Time (units)
Distance = (27.8 × 2.5) meters
Distance = 69.50 meters
Therefore the distance travelled is 69.50 meters.
Answer:
Friction:-
The friction force is the force exerted by a surface as an object moves across it or makes an effort to move across it. There are at least two types of friction force - sliding and static friction. Though it is not always the case, the friction force often opposes the motion of an object. For example, if a book slides across the surface of a desk, then the desk exerts a friction force in the opposite direction of its motion. Friction results from the two surfaces being pressed together closely, causing inter molecular attractive forces between molecules of different surfaces. As such, friction depends upon the nature of the two surfaces and upon the degree to which they are pressed together. The maximum amount of friction force that a surface can exert upon an
EG:-
A coaster sliding against a table.
Gravity:-
The force of gravity is the force with which the earth, moon, or other massively large object attracts another object towards itself. By definition, this is the weight of the object. All objects upon earth experience a force of gravity that is directed "downward" towards the center of the earth. The force of gravity on earth is always equal to the weight of the object as found
EG:-
The force that causes a car to coast downhill even when you aren't stepping on the gas.
Elastic:-
Elasticity is the ability of a material to return to its original shape after being stretched or compressed. When an elastic material is stretched or compressed, it exerts elastic force. This force increases the more the material is stretched or compressed.
EG:-
An archer's stretched bow
Answer: momentum has the same direction as that of velocity but when 2 bodies with the same linear momentum & different velocities it has different masses because a vector quantity is represented by a cross product of mass and velocity of object .
Answer:
r = 5,085 m
Explanation:
The force exerted by on the surface of the Earth on an electron is its weight
W = F = 9.11 10⁻³¹ 9.8
W = 8.9 10⁻³⁰ N
The electric force between an electron and a proton is given by Coulomb's Law
Fe = k q₁ q₂ / r²
Fe = - k q² / r²
They ask us that W = Fe
W = k q² / r²
r = √ k q² / W
Let's calculate
r = √ 8.99 10⁹ (1.6 10⁻¹⁹)² /8.9 10⁻³⁰
r = √ 25.86
r = 5,085 m
Let's look for the relationship of this distance with the harmonic distance
R / R_atomic = 5,085 / 10⁻¹⁰
R / R_Atomic = 5 10¹⁰
We see that this distance is 10¹⁰ times the interatomic distance, so the gravitational attraction force is very small at atomic scale