Answer:
1.2cm
Explanation:
V=(2ev/m)^1/2
=(2*1.6*10^19 x2500/ 1.67*10^27)^1/2
=6.2x10^5m/s
Radius of resulting path= MV/qB
= 1.67*10^-27x6.92*10^6/1.6*10^-16 x0.6
=0.012m
=1.2cm
The formula for working out speed is distance ÷ time.
55 km ÷ 2 hours = 27.5 km/h (average speed for first part of journey)
52km ÷ 5 hours = 10.4 km/h (average speed for second part of journey)
(27.5 + 10.4) ÷ 2 = 18.95 km/h (average speed throughout the journey)
Given the equation for the Speed of a Satellite
v = SqRt{Gravitational Constant}{Mass of Earth} divided by the radius given in your problem
we have:
(square root whole term on right side)
v = G Me
———
r
so. (6.67x10^-11)(5.97x10^24)
___________________
(8.0x10^6)
v = 7055 m/s (which is reasonable)
so utilize the Kinetic Energy Formula
KE = 1/2mv^2
KE = 1/2(200)(7055)^2
KE = 4.977x10^9 J
Answer:
887.1Hz
Explanation:
Given parameters:
Speed of sound wave = 330m/s
Wavelength = 0.372m
Unknown:
Frequency = ?
Solution:
To solve this problem, we use the expression below:
Speed = Frequency x wavelength
330 = Frequency x 0.372
Frequency = 887.1Hz
The sun is a huge ball of gas held together by gravity.
It does not burn the way wood does, due to oxygen, but it gets energy by a process called nuclear fusion, where Hydrogen is converted to Helium.
The sun will cease to "burn" when it runs out of Hydrogen, but that has a long way to go.