Without the fig, we know nothing about AB, C_1, C_2, V_a, or V_b.
The probability of getting any kind of answer from anybody who hasn't
seen or tasted the fig is vanishingly small.
Answer:
a)1.13×10³
b)1.6×10³
Explanation:
Given:
Boltzmann's constant (K)=1.38×10^-23 J/K
atmoic mass of helium = 4 AMU or 4×1.66×10^-27kg
a)The formula for RMS speed (Vrms) is given as

where
K= Boltzmann's constant
T= temperature
m=mass of the gas


b) RMS speed of helium when the temperature is doubled


Answer:
Name: Zinc
Symbol: Zn
Atomic Number: 30
Atomic Mass: 65.39 amu
Melting Point: 419.58 °C (692.73 K, 787.24396 °F)
Boiling Point: 907.0 °C (1180.15 K, 1664.6 °F)
Number of Protons/Electrons: 30
Number of Neutrons: 35
Classification: Transition metal
Crystal Structure: Hexagonal
Density at 293 K: 7.133 g/cm3
Color: bluish
('lil long, sorry)
Answer:
The answer to the questions is;
In terms of standing waves, the listener moves from a location with high amplitude to one with lower amplitude or vibration (anti-node to node)
The distance 4.1 cm is equivalent to λ/4
Explanation:
For standing waves we have is a stationary wave comprising of two opposite direction moving waves that have equal amplitude and frequency, resulting in the superimposition of the waves. As such certain points are fixed along the wave path that is the peaks amplitude of the wave oscillation is constant at a particular point. A node occurring at a point and an anti-node occurring at another fixed point
When the listener moves 4.1 cm he or she has left the anti-node to the node hence the faintness of the sound
The distance from the node to the anti-node is 1/4 wavelength, or 1/4×λ
Therefore 4.1 cm is λ/4
Answer:
c)by a factor of four
Explanation:
The total energy of a simple harmonic oscillator is given by

where
k is the spring constant of the oscillator
A is the amplitude of the motion
In this problem, the amplitude of the oscillator is doubled, so
A' = 2A
Therefore, the new total energy is

So, the total energy increases by a factor 4.