Answer:
Physics
Explanation:
Explanation:
We can use the Theorem of Work (W) and Kinetic Energy (K):
W=ΔK=Kf−Ki
it basically tells us that the work done on our system will show up as change in Kinetic Energy:
We know that the initial Kinetic Energy, Ki=12mv2i, is zero (starting from rest) while the final will be equal to 352J; Work will be force time displacement. so we get:
F⋅d=Ff
45d=352
and so:
d=35245=7.8≈8m
<h2>
Power of cheetah is 5576.85 W = 7.48 hp</h2>
Explanation:
Power is the ratio of energy to time.
Here we need to consider kinetic energy,
Mass, m = 102 kg
Initial velocity = 0 m/s
Final velocity = 16.2 m/s
Time, t = 2.4 s
Initial kinetic energy = 0.5 x Mass x Initial velocity² = 0.5 x 102 x 0² = 0 J
Final kinetic energy = 0.5 x Mass x Final velocity² = 0.5 x 102 x 16.2² = 13384.44 J
Change in energy = Final kinetic energy - Initial kinetic energy
Change in energy = 13384.44 - 0
Change in energy = 13384.44 J
Power = 13384.44 ÷ 2.4 = 5576.85 W = 7.48 hp
Power of cheetah is 5576.85 W = 7.48 hp
Answer:
a) 5.63 atm
Explanation:
We can use combined gas law
<em>The combined gas law</em> combines the three gas laws:
- Boyle's Law, (P₁V₁ =P₂V₂)
- Charles' Law (V₁/T₁ =V₂/T₂)
- Gay-Lussac's Law. (P₁/T₁ =P₂/T₂)
It states that the ratio of the product of pressure and volume and the absolute temperature of a gas is equal to a constant.
P₁V₁/T₁ =P₂V₂/T₂
where P = Pressure, T = Absolute temperature, V = Volume occupied
The volume of the system remains constant,
So, P₁/T₁ =P₂/T₂
a) 