Answer:
Hi... Potential energy is converted to kinetic energy and kinetic energy is converted to potential energy
Based on the attached image:
- The name of the longitude line that passes through point A is the International Date Line
- The longitude 180° is experiencing solar noon because the rays of the sun are parallel to it.
- The longitude for 6 pm is 90° W, 12 midnight is 0°, and 6 am is 90° E
- Longitude 120° is B
- Solar time at Point B is 4 pm
- The location will correspond to any point on the same latitude as A
<h3>What are lines of longitude?</h3>
Lines of longitude are imaginary lines which run along the earth from the North pole. to the South pole.
Longitude lines divide the earth into semi-circles.
Longitude lines are known as meridians and each meridian measures one arc degree of longitude.
Considering the attached image:
- The name of the longitude line that passes through point A is the International Date Line
- The longitude 180° is experiencing solar noon because the rays of the sun are parallel to it.
- The longitude for 6 pm is 90° W, 12 midnight is 0°, and 6 am is 90° E
- Longitude 120° is B
- Solar time at Point B is 4 pm
- the location will correspond to any point on the same latitude as A
In conclusion, longitude lines are imaginary lines and run from North to South on the earth.
Learn more about lines of longitude at: brainly.com/question/1939015
#SPJ1
Answer:
8 N North.
Explanation:
Given that,
One force has a magnitude of 10 N directed north, and the other force has a magnitude of 2 N directed south.
We need to find the magnitude of net force acting on the object.
Let North is positive and South is negative.
Net force,
F = 10 N +(-2 N)
= 8 N
So, the magnitude of net force on the object is 8 N and it is in North direction (as it is positive). Hence, the correct option is (d) "8N north".
Answer:
350 F to 100 F it take approx 87.33 min
Explanation:
given data
oven = 350◦F
cooling rack = 70◦F
time = 30 min
cake = 200◦F
solution
we apply here Newtons law of cooling
= -k(T-Ta)
=
(T(t) -Ta)
=
= -k(T-Ta)
-ky
= -ky
T(t) -Ta = (To -Ta)
T(t) = Ta+ (To -Ta)
put her value for time 30 min and T(t) = 200◦F and To =350◦F and Ta = 70◦F
so here
200 = 70 + ( 350 - 70 ) 
k = 0.025575
so here for T(t) = 100F
100 = 70 + ( 350 - 70 ) 
time = 87.33 min
so here 350 F to 100 F it take approx 87.33 min