Answer:
616.3 rad/s²
Explanation:
Given that
t= 1.46 s
Initial angular velocity ,ωi = 0 rad/s
Final angular velocity ωf= 27000 rev/min
Angular speed in the rad/s given as

Now by putting the values

ωf=900 rad/s
We know that (if acceleration is constant)
ωf=ωi + α t
α=Angular acceleration
900 = 0 + α x 1.46

Therefore the acceleration will be 616.3 rad/s²
Answer:
R=0.5B+0.5C+2A+D
Explanation:
By the triangular law of vector addition
vector R= vector B- vector D
As A,B,C,D are edges of the parallelogram,
A is parallel to D but opposite in direction.
Therefore
;
;

B is parallel to C and in same direction.



Since the basketball and the tennis ball both travel to the same direction relative to the ground, the velocity of the basketball relative to the tennis ball is therefore the difference of their velocities.
0.5 m/s - 0.25 m/s = 0.25 m/s
Thus, the basketball travel for 0.25 m/s relative to the tennis ball.
There is too much information given, it's hard to understand exactly which variables are important in this problem.