Answer:
0.6 Ω
Explanation:
As shown in the diagram below,
Since the resistance and the ammeter are connected in series,
(i) The same amount of current flows through them.
(ii) The sum of their individual individual voltage is equal to the total voltage of the circuit.
Applying ohm's law,
V = IR................ Equation 1
Where V = Voltage across the ammeter, I = current flowing through the ammeter, R = resistance of the ammeter.
make R the subject of the equation
R = V/I............... Equation 2
Given: V = 1.2-0.9 = 0.3 V, I = 0.5 A.
Substitute into equation 2
R = 0.3/0.5
R = 0.6 Ω
Behavior has at least six dimensions, which are: frequency, duration, latency, topography, locus, and force. Since the coach is recording how long it takes, the track coach is recording the duration behavior because duration is a synonym for time. Duration is your answer.
Answer:
avriage force F = 2722.5 N
Explanation:
For this problem we can use Newton's second law, to calculate the average force and acceleration we can find it by kinematics.
vf² = v₀² - 2 ax
The final carriage speed is zero (vf = 0)
0 = v₀² - 2ax
a = v₀² / 2x
a = 1.1²/(2 0.200)
a = 3.025 m / s²
a = 3.0 m/s²
We calculate the average force
F = ma
F = 900 3,025
F = 2722.5 N
Answer:
313.92w
Explanation:
Formula for power:
P=W/∆t = Fv
Givens:
m=20kg
∆y=4.0m
∆t=2.5s
a=9.81m/s²
In order to find power, we first need to solve for work.
W=Fd (force*displacement), f=mg
W=mg∆y
W=(20kg)(9.81m/s²)(4.0m)
W=784.8J
P=W/∆t
P=784.8J/2.5s
P=313.92 watts