Answer:
(a) m = 1.6 x 10²¹ kg
(b) K.E = 2.536 x 10¹¹ J
(c) v = 7.12 x 10⁵ m/s
Explanation:
(a)
First we find the volume of the continent:
V = L*W*H
where,
V = Volume of Slab = ?
L = Length of Slab = 4450 km = 4.45 x 10⁶ m
W = Width of Slab = 4450 km = 4.45 x 10⁶ m
H = Height of Slab = 31 km = 3.1 x 10⁴ m
Therefore,
V = (4.45 x 10⁶ m)(4.45 x 10⁶ m)(3.1 x 10⁴ m)
V = 6.138 x 10¹⁷ m³
Now, we find the mass:
m = density*V
m = (2620 kg/m³)(6.138 x 10¹⁷ m³)
<u>m = 1.6 x 10²¹ kg</u>
<u></u>
(b)
The kinetic energy will be:
K.E = (1/2)mv²
where,
v = speed = (1 cm/year)(0.01 m/1 cm)(1 year/365 days)(1 day/24 h)(1 h/3600 s)
v = 3.17 x 10⁻¹⁰ m/s
Therefore,
K.E = (1/2)(1.6 x 10²¹ kg)(3.17 x 10⁻¹⁰ m/s)²
<u>K.E = 2.536 x 10¹¹ J</u>
<u></u>
(c)
For the same kinetic energy but mass = 77 kg:
K.E = (1/2)mv²
2.536 x 10¹¹ J = (1/2)(77 kg)v²
v = √(2)(2.536 x 10¹¹ J)
<u>v = 7.12 x 10⁵ m/s</u>
Answer:
Push with force of 1N
Explanation:
I have explained in the paper.
Goodluck
Answer:
Mg will replace Ag in a compound
Explanation:
A single replacement reaction is driven by the position of ions on the activity series.
As a rule of thumb, the position of metal ions on the activity series determines their reactivity.
Metal ions that are above another are more reactive and they will displace those that are lower.
Generally, activity increases as we go up the group.
Mg ions are higher than Ag ions on the series so, Mg will displace Ag from a solution.
Answer:
The correct answer is theory of general relativity.
Explanation:
According to the statement of equivalence the gravitational mass force on an object standing on the surface of earth is same as the pseudo force that acts on it if it accelerated at acceleration equal to acceleration due to gravity.
According to Einestine both the forces are indistinguishable as both the forces produce same effects. Thus both are equivalent and thus gravity is a phenomenon that can be analysed in a radically different way which gives some strange results such as bending of light, existence of black holes,e.t.c
Answer:
4
Explanation:
We are given that

K.E at x=0 m=20 J
K.E at x=3 m=11 J
We have to find the value of c.
By work energy theorem
Work done=Change in kinetic energy
W=
![W=[\frac{cx^2}{2}-x^3]^{3}_{0}](https://tex.z-dn.net/?f=W%3D%5B%5Cfrac%7Bcx%5E2%7D%7B2%7D-x%5E3%5D%5E%7B3%7D_%7B0%7D)





