MgS2o3 weights (24.305) + 3(16) grams pre mole so if you divide 181 g by that number you will have the number of moles. Grams*(moles/grams)=moles
Ecell = E°cell - RT/vF * lnQ
R is the gas constant: 8.3145 J/Kmol
T is the temperature in kelvin: 273.15K = 0°C, 25°C = 298.15K
v is the amount of electrons, which in your example seems to be six (I'm not totally sure)
F is the Faradays constant: 96485 J/Vmol (not sure about the mol)
Q is the concentration of products divided by the concentration of reactants, in which we ignore pure solids and liquids: [Mg2+]³ / [Fe3+]²
Standard conditions is 1 mol, at 298.15K and 1 atm
To find E°cell, you have to look up the reduction potensials of Fe3+ and Mg2+, and solve like this:
E°cell = cathode - anode
Cathode is where the reduction happens, so that would be the element that recieves electrons. Anode is where the oxidation happens, so that would be the element that donates electrons. In your example Fe3+ recieves electrons, and should be considered as cathode in the equation above.
When you have found E°cell, you can just solve with the numbers I gave you.
Answer:
The process of making S'more by adding chocolate bar, gram-crackers, and marshmallows in layers is not a chemical reaction
Explanation:
In a chemical reaction, the substances involved in the reaction are known as the reactants and the substances produced have different physical and chemical properties than those of the reactants and they are known as the products.
The bonds that hold the atoms of the reactants are broken down and rearranged, creating entirely new substances as products. Therefore, energy must be added and/or evolved in any chemical reaction and all reactant atoms should be involved in the reaction.
The change in energy can be sensed as heat change such as increase or decrease in the temperature of the products
Since S'more does not involve any of the above changes that occur in a chemical reaction when the chocolate bar, gram-crackers, and marshmallows are put together, it is not a chemical change or a chemical reaction.