Given:
257J of heat
5500g of mercury
increase by 5.5
degrees Celsius
Required:
Specific heat of
mercury
Solution:
H
= mCpT
257J = (5500g of
mercury) Cp (5.5 degrees Celsius)
Cp = 8.5 x 10^-3
Joules per gram per degree Celsius
Answer:
the work input is depented on the work output
Explanation:
Answer:
d. 12.3 grams of Al2O3
Explanation:
Based on the reaction:
4Al + 3O2 → 2Al2O3
<em>Where 4 moles of Al reacts in excess of oxygen to produce 2 moles of aluminium oxide.</em>
<em />
To solve this question we must find the moles of Aluminium. With these moles we can find the moles of aluminium oxide using the reaction:
<em>Moles Al -Molar mass: 26.9815g/mol-</em>
6.50g * (1mol / 26.9815g) = 0.241 moles Al
<em>Mass Al₂O₃ -Molar mass: 101.96g/mol-</em>
0.241 moles Al * (2 mol Al2O3 / 4 mol Al) = 0.120 moles Al2O3
0.120 moles Al2O3 * (101.96g / mol) =
12.3g of Al2O3 are produced.
Right answer is:
<h3>d. 12.3 grams of Al2O3
</h3>
If acetone has a density of 0.7857 the mass in grams of point A is 22.4 g and the volume at point B is 8.32 mL.
<h3>What is acetone?</h3>
Acetone is known as a chemical substance that is usually found in the environment but can also be produced artificially. Acetone is a polar organic product that interacts very well with water molecules, generating dipole-dipole relationships.It is colorless with a distinctive smell and taste, we find it in products known as <u>cleaning and personal care products</u>, but we can also use it as a solvent for substances.
Also in the environment in <u>plants, trees and in volcano emissions or in forest fires</u>, it does not become <em>toxic</em> in low doses but if it is exposed to an individual in high doses it can become <em>fatal</em>.
In the statement we can find that acetone has a density of 0.7857 .
Therefore, we can confirm that if acetone has a density of 0.7857 the mass in grams of point A is 22.4 g and the volume at point B is 8.32 mL.
To learn more about acetone visit: brainly.com/question/13334667?referrer=searchResults
#SPJ1
Answer:- Formula of the hydrate is and it's name is Iron(III)sulfate pentahydrate.
Solution:- As per the given information, there is 18.4% water in the hydrate. If we assume the mass of the hydrate as 100 grams then there would be 18.4 grams of water and 81.6 grams of Iron(III)sulfate present in the hydrate.
Molar mass for Iron(III)sulfate is 399.88 gram per mol and the molar mass for water is 18.02 gram per mol.
We will calculate the moles of Iron(III)sulfate and water present in the compound on dividing their grams by their molar masses as:
=
=
Now, the next step is to calculate the mol ratio and for this we divide the moles of each by the least one of them means whose moles are less. Here, the moles of Iron(III)sulfate are less than moles of water. So, we divide the moles of each by 0.204.
= 1
= 5
There is 1:5 mol ratio between Iron(III)sulfate and water. So, the formula of the hydrate is and the name of the hydrate is Iron(III)sulfate pentahydrate.