1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dexar [7]
2 years ago
6

A sample of carbon dioxide occupies a 5.13 dm3 container at STP. What is the volume of the gas at a pressure of 286.5 kPa and a

temperature of 12.9°C?
Chemistry
1 answer:
suter [353]2 years ago
5 0

Considering the ideal gas law and STP conditions, the volume of the gas at a pressure of 286.5 kPa and a temperature of 12.9°C is 1.8987 L.

<h3>Definition of STP condition</h3>

The STP conditions refer to the standard temperature and pressure. Pressure values at 1 atmosphere and temperature at 0 ° C are used and are reference values for gases. And in these conditions 1 mole of any gas occupies an approximate volume of 22.4 liters.

<h3>Ideal gas law</h3>

Ideal gases are a simplification of real gases that is done to study them more easily. It is considered to be formed by point particles, do not interact with each other and move randomly. It is also considered that the molecules of an ideal gas, in themselves, do not occupy any volume.

The pressure, P, the temperature, T, and the volume, V, of an ideal gas, are related by a simple formula called the ideal gas law:

P×V = n×R×T

where:

  • P is the gas pressure.
  • V is the volume that occupies.
  • T is its temperature.
  • R is the ideal gas constant. The universal constant of ideal gases R has the same value for all gaseous substances.
  • n is the number of moles of the gas.  

<h3>Volume of gas</h3>

In first place, you can apply the following rule of three: if by definition of STP conditions 22.4 L are occupied by 1 mole of carbon dioxide, 5.13 L (5.13 dm³= 5.13 L, being 1 dm³= 1 L) are occupied by how many moles of carbon dioxide?

amount of moles of carbon dioxide=\frac{5.13 Lx1 mole of carbon dioxide}{22.4 L}

<u><em>amount of moles of carbon dioxide= 0.229 moles</em></u>

Then, you know:

  • P= 286.5 kPa= 2.8275352 atm (being 1 kPa= 0.00986923 atm)
  • V= ?
  • T= 12.9 C= 285.9 K (being 0°C= 273 K)
  • R= 0.082 \frac{atmL}{mol K}
  • n= 0.229 moles

Replacing in the ideal gas law:

2.8275352 atm× V = 0.229 moles×0.082 \frac{atmL}{mol K} × 285.9 K

Solving:

V= (0.229 moles×0.082 \frac{atmL}{mol K} × 285.9 K)÷ 2.8275352 atm

<u><em>V= 1.8987 L</em></u>

Finally, the volume of the gas at a pressure of 286.5 kPa and a temperature of 12.9°C is 1.8987 L.

Learn more about

STP conditions:

brainly.com/question/26364483

brainly.com/question/8846039

brainly.com/question/1186356

the ideal gas law:

brainly.com/question/4147359

#SPJ1

You might be interested in
Is albert better grffffrr#fffffrttt
Nezavi [6.7K]

Answer:

yes, albert is better grffffrr#fffffrttt.

Explanation:

4 0
3 years ago
Read 2 more answers
Why is zinc not extracted from ZnO through reduction using CO?​
Jet001 [13]
The standard Gibbs free energy of formation of ZnO from Zn is lower than that of CO2 from CO. Therefore, CO cannot reduce ZnO to Zn. Hence, Zn is not extracted from ZnO through reduction using CO
6 0
1 year ago
I will give brainliest!!! In the reaction represented by the equation Al2O3 -&gt; Al + O2, what is the mole ratio of aluminum to
Effectus [21]

Answer:;

4:3

Explanation:

Balanced:

4Al + 302 yields 2al2O3

7 0
3 years ago
Describe one example of an energy transformation in this diagram and explain why it is a transformation. Repeat this description
iren [92.7K]

Answer:

The conservation of energy principle states that energy can neither be destroyed nor created. Instead, energy just transforms from one form into another. So what exactly is energy transformation? Well, as you might guess, energy transformation is defined as the process of changing energy from one form to another. There are so many different kinds of energy that can transform from one form to another. There is energy from chemical reactions called chemical energy, energy from thermal processes called heat energy, and energy from charged particles called electrical energy. The processes of fission, which is splitting atoms, and fusion, which is combining atoms, give us another type of energy called nuclear energy. And finally, the energy of motion, kinetic energy, and the energy associated with position, potential energy, are collectively called mechanical energy. That sounds like quite a lot, doesn't it? Well it is, but don't worry, it's actually all pretty easy to remember. Next, we'll explore all of these kinds of possible transformations in more detail. Different Types of Energy Transformations Chemical energy is the energy stored within a substance through the bonds of chemical compounds. The energy stored in these chemical bonds can be released and transformed during any type of chemical reaction. Think of when you're hungry. When you eat a piece of bread to satisfy this hunger, your body breaks down the chemical bonds of the bread and uses it to supply energy to your body. In this process, the chemical energy is transformed into mechanical energy, which you use to move, and which we'll cover in more detail in a moment. It also transforms it into thermal energy, which is created through the metabolic processes in your body to generate heat. Most of the time, chemical energy is released in the form of heat, and this transformation from chemical energy to heat, or thermal energy, is called an exothermic reaction. Next, there are two main types of mechanical energy: kinetic energy and potential energy. Kinetic energy is the energy associated with the motion of an object. Therefore, any object that moves has kinetic energy. Likewise, there are two types of potential energy: gravitational potential energy and elastic potential energy. Gravitational potential energy is associated with the energy stored by an object because of its location above the ground. Elastic potential energy is the energy stored by any object that can stretch or compress. Potential energy can be converted to kinetic energy and vice versa. For example, when you do a death-defying bungee jump off of a bridge, you are executing a variety of energy transformations. First, as you prepare to jump, you have gravitational potential energy - the bungee cord is slack so there is no elastic potential energy. Once you jump, you convert this gravitational potential energy into kinetic energy as you fall down. At the same time, the bungee cord begins to stretch out. As the cord stretches, it begins to store elastic potential energy. You stop at the very bottom when the cord is fully stretched out, so at this point, you have elastic potential energy. The cord then whips you back up, thereby converting the stored elastic potential energy into kinetic energy and gravitational potential energy. The process then repeats

Explanation:

here u go :P

8 0
3 years ago
Read 2 more answers
A bomb calorimeter has a heat capacity of 783 J/oC and contains 254 g of water whose specific heat capacity is 4.184 J/goC. How
IrinaK [193]

Answer : The amount of heat evolved by a reaction is, 4.81 kJ

Explanation :

Heat released by the reaction = Heat absorbed by the calorimeter + Heat absorbed by the water

q=[q_1+q_2]

q=[c_1\times \Delta T+m_2\times c_2\times \Delta T]

where,

q = heat released by the reaction

q_1 = heat absorbed by the calorimeter

q_2 = heat absorbed by the water

c_1 = specific heat of calorimeter = 783J/^oC

c_2 = specific heat of water = 4.184J/g^oC

m_2 = mass of water = 254 g

\Delta T = change in temperature = T_2-T_1=(23.73-26.01)=-2.28^oC

Now put all the given values in the above formula, we get:

q=[(783J/^oC\times -2.28^oC)+(254g\times 4.184J/g^oC\times -2.28^oC)]

q=-4208.28J=-4.81kJ

Therefore, the amount of heat evolved by a reaction is, 4.81 kJ

7 0
3 years ago
Other questions:
  • 4. I am named after the united states since I was discovered here. What is my name and how many protons do I have?
    15·1 answer
  • Which one of the following substances would be the most soluble in CCl4?
    15·1 answer
  • What is the empirical formula for Hg2(NO3)2
    9·1 answer
  • if an object is moving at a constant speed in one direction, what is needed to change its speed or direction?
    15·2 answers
  • What is an exothermic reaction
    14·1 answer
  • Alkenes can be converted to alcohols by hydroboration–oxidation. Draw a structure showing one of the alcohols formed in the foll
    5·1 answer
  • The characteristic temperature at which a pure solid changes to a liquid is its ______ point.
    13·1 answer
  • How many molecules are in 7V205?​
    10·1 answer
  • Write any four properties of water.​
    14·1 answer
  • Is nitric acid a strong or weak acid. Explain your answer.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!