I believe the statement above is true. <span>A </span>carbohydrate<span> is a </span>biological molecule<span> consisting of </span>carbon<span> (C), </span>hydrogen<span> (H) and </span>oxygen<span> (O) atoms, usually with a hydrogen–oxygen </span>atom ratio of 2:1. <span>When a </span>carbohydrate<span> is broken into its component sugar molecules by </span>hydrolysis<span> (e.g. sucrose being broken down into glucose and fructose), this is termed saccharification.</span>
Answer:

Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to solve this problem by firstly setting up the equilibrium expression for the given reaction, in agreement to the law of mass action:
![K=\frac{[NO]^2}{[N_2][O_2]}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BNO%5D%5E2%7D%7B%5BN_2%5D%5BO_2%5D%7D)
Next, we plug in the given concentrations on the data table to obtain:

Regards!
To solve this question, we first need to know the mass of one mole of mercury. This can be done by checking the periodic table.
From the periodic table, we can see that:
molar mass of mercury = 200.59 grams/mole.
From the measurements, the chemist found that the participated amount of mercury is 0.02 moles.
We can simply determine the mass of 0.02 moles by doing cross multiplication as follows:
mass of 0.02 moles = (0.02 x 200.59) / 1 = 4.0118 grams
Rounding the answer to 2 significant digits, we get:
mass of 0.02 moles = 4.01 grams
The molar mass or As is 74.9g. Start with 281g multiply by (1mol/74.9g) = 3.75 mols
Put what you don’t want on the bottom (in this case grams) so they the u it’s cancel (if you multiply by grams and the divide by grams they cancel. Ultimately leave what you want on the top ( This case mols) then do the math
I think the correct answer from the choices listed above is option B. <span>Of its 6 electrons, 4 are valence electrons, a carbon atom can form 4 covalent bonds with other elements. It is the 4 valence electrons available that allows this.
Hope this answers the question.</span>