(a) The spring stiffness constant of the spring is 18,392 N/m.
(b) The time the car was in contact with the spring before it bounces off in the opposite direction is 0.23 s.
<h3>Kinetic energy of the car</h3>
The kinetic energy of the car is calculated as follows;
K.E = ¹/₂mv²
K.E = ¹/₂ x 950 x 22²
K.E = 229,900 J
<h3>Stiffness constant of the spring</h3>
The stiffness constant of the spring is calculated as follows;
K.E = U = ¹/₂kx²
k = 2U/x²
k = (2 x 229,900)/(5)²
k = 18,392 N/m
<h3>Force exerted on the spring</h3>
F = kx
F = 18,392 x 5
F = 91,960 N
<h3>Time of impact</h3>
F = mv/t
t = mv/F
t = (950 x 22)/(91960)
t = 0.23 s
Learn more about spring constant here: brainly.com/question/1968517
#SPJ4
A.) reference group
"A reference group includes individuals or groups that influence our opinions, beliefs, attitudes and behaviors. They often serve as our role models and inspiration"(study.com).
Answer:
The floor of the ocean is 6120 m deep.
Explanation:
In order to find the depth of the ocean we need to use the speed of the ultrasonic sound 1530 m/s and the time it takes for the echo to comeback. Since the wave is transmitted by the vessel goes to the bottom of the ocean and comeback, it travels the distance between the vessel and the floor two times, so we can divide the time by two. We then have:
D = V*t/2 = 1530*8/2 = 1530*4 = 6120 m
Answer:
<u><em>A for certain.</em></u>
Explanation:
I got it right on the test, thanks to the other brainly answerer teresecaway. But knowing the answer doesnt help much if you dont know WHY. The reason WHY is as follows. At first you might think it would be B, because the downwards force is greater than the upwards force. I thought that maybe upwards force would also count as the table supporting it, but no, thats just structural inanimate solid table. The answer is A. gravity would have to be HIGHLY raised or somebody pressing down on it, to make it fall through the table.
Answer:
4.9 minutes
Explanation:
Given; T(t) = Ce^-kt + Ts
Now;
T(t) = 190 degrees Fahrenheit
Ts = 60 degrees
To obtain C;
190 = Ce^0 + 60
190 - 60 = C
C = 130
Hence, to find k when t=11
172 = 130 e^-11k + 60
172 -60/130 = e^-k
e^-k = 0.86
ln(e^-k) = ln( 0.86)
-k = -0.15
k = 0.15
Hence at 122 degrees, t is;
T(t) = Ce^-kt + Ts
122 = 130e^-0.15t + 60
122 - 60/130 = e^-0.15t
0.477 = e^-0.15t
ln (e^-0.15t) = ln (0.477)
-0.15t = -0.74
t = 0.74/0.15
t = 4.9 minutes